연구
교육
솔루션
로그인
KR
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
TR - Turkish
JA - Japanese
Cardiovascular Research Center,
Department of Genetics and Genomic Sciences,
Black Family Stem Cell Institute
Nishat Sultana has not added Biography.
If you are Nishat Sultana and would like to personalize this page please email our Author Liaison for assistance.
Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis.
Development (Cambridge, England) Aug, 2013 | Pubmed ID: 23824573
Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development.
Developmental biology Jun, 2014 | Pubmed ID: 24613616
Smad4 regulates ureteral smooth muscle cell differentiation during mouse embryogenesis.
PloS one , 2014 | Pubmed ID: 25127126
Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies.
Genesis (New York, N.Y. : 2000) Jun, 2015 | Pubmed ID: 26010701
A Murine Myh6MerCreMer Knock-In Allele Specifically Mediates Temporal Genetic Deletion in Cardiomyocytes after Tamoxifen Induction.
PloS one , 2015 | Pubmed ID: 26204265
Resident c-kit(+) cells in the heart are not cardiac stem cells.
Nature communications Oct, 2015 | Pubmed ID: 26515110
A series of robust genetic indicators for definitive identification of cardiomyocytes.
Journal of molecular and cellular cardiology 08, 2016 | Pubmed ID: 27266388
An IGF1R-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury.
Circulation Nov, 2016 | Pubmed ID: 27803039
Synthesis of Modified mRNA for Myocardial Delivery.
Methods in molecular biology (Clifton, N.J.) , 2017 | Pubmed ID: 27910045
Optimizing Cardiac Delivery of Modified mRNA.
Molecular therapy : the journal of the American Society of Gene Therapy 06, 2017 | Pubmed ID: 28389322
Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development.
The Journal of biological chemistry 06, 2018 | Pubmed ID: 29735531
Cardiac Sca-1 Cells Are Not Intrinsic Stem Cells for Myocardial Development, Renewal, and Repair.
Circulation 12, 2018 | Pubmed ID: 30566018
Optimizing Modified mRNA Synthesis Protocol for Heart Gene Therapy.
Molecular therapy. Methods & clinical development Sep, 2019 | Pubmed ID: 31508439
Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction.
Circulation Mar, 2020 | Pubmed ID: 31992066
Optimization of 5' Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury.
Molecular therapy. Methods & clinical development Jun, 2020 | Pubmed ID: 32300609
Icahn School of Medicine at Mount Sinai
Keerat Kaur1,2,3,
Nishat Sultana1,2,3,
Yoav Hadas1,2,3,
Ajit Magadum1,2,3,
Mohammad Tofael Kabir Sharkar1,2,3,
Elena Chepurko1,2,3,
Lior Zangi1,2,3
1Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai,
2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai,
3Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai
개인 정보 보호
이용 약관
정책
연락처
사서에게 추천하기
JoVE 뉴스레터
JoVE Journal
연구 방법 컬렉션
JoVE Encyclopedia of Experiments
아카이브
JoVE Core
JoVE Business
JoVE Science Education
JoVE Lab Manual
교수 리소스 센터
저자
사서
액세스
JoVE 소개
Copyright © 2024 MyJoVE Corporation. 판권 소유