로그인

Halogenation is the addition of chlorine or bromine across the double bond in an alkene to yield a vicinal dihalide. The reaction occurs in the presence of inert and non-nucleophilic solvents, such as methylene chloride, chloroform, or carbon tetrachloride.

Consider the bromination of cyclopentene. Molecular bromine is polarized in the proximity of the π electrons of cyclopentene. An electrophilic bromine atom adds across the double bond, forming a cyclic bromonium ion intermediate.

Figure1

A bromonium ion is more stable than the analogous carbocation, as it has more covalent bondsand all the atoms have filled octets.

Figure2

In the second step, the nucleophile, a bromide ion, attacks one of the carbon atoms in the bridged bromonium ion. Due to the non-availability of bonding orbitals and steric crowding, the nucleophile approaches the antibonding orbitals, pointing opposite to the carbon–bromine bond. This accounts for the anti addition.

Figure3

Thus, the addition of two bromine atoms takes place from the opposite faces of the double bond in cyclopentene to yield trans-1,2-dibromocyclopentane.

The configuration of the starting alkene decides the stereochemical outcome for halogenation reactions. For example, the addition across cis-2-butene generates a pair of enantiomers, while addition across trans-2-butene produces a meso compound. Therefore, the halogenation of alkenes is a diastereospecific reaction.

Tags

HalogenationAlkenesChlorineBromineVicinal DihalideInert SolventsNon nucleophilic SolventsMethylene ChlorideChloroformCarbon TetrachlorideBromination Of CyclopentenePolarized BromineElectrophilic Bromine AtomCyclic Bromonium Ion IntermediateStability Of Bromonium IonCarbocationNucleophileBridged Bromonium IonAnti AdditionTrans 12 dibromocyclopentaneStereochemical OutcomeCis 2 buteneTrans 2 buteneEnantiomersMeso Compound

장에서 8:

article

Now Playing

8.3 : Halogenation of Alkenes

Reactions of Alkenes

14.8K Views

article

8.1 : 친전자성 첨가물의 위치 선택성-과산화물 효과

Reactions of Alkenes

8.0K Views

article

8.2 : 자유 라디칼 연쇄 반응 및 알켄의 중합

Reactions of Alkenes

7.3K Views

article

8.4 : Alkenes에서 Halohydrin의 형성

Reactions of Alkenes

12.4K Views

article

8.5 : Alkenes의 Acid-Catalyzed Hydration (산성 촉매 수화)

Reactions of Alkenes

12.9K Views

article

8.6 : Regioselectivity and Stereochemistry of Acid-Catalyzed Hydration(산-촉매 수화의 위치 선택성 및 입체화학)

Reactions of Alkenes

8.2K Views

article

8.7 : Oxymercuration-알켄 환원

Reactions of Alkenes

7.1K Views

article

8.8 : Hydroboration-Alkenes의 산화

Reactions of Alkenes

7.3K Views

article

8.9 : Hydroboration의 위치 선택성 및 입체화학(Regioselectivity and Stereochemistry of Hydroboration)

Reactions of Alkenes

7.9K Views

article

8.10 : 알켄의 산화 : 오스뮴 테트라 옥사이드를 사용한 Syn Dihydroxylation

Reactions of Alkenes

9.5K Views

article

8.11 : 알켄의 산화 : 과망간산 칼륨을 사용한 Syn Dihydroxylation

Reactions of Alkenes

10.1K Views

article

8.12 : 알켄의 산화 : 과산화산을 사용한 안티 디하이드록실화

Reactions of Alkenes

5.2K Views

article

8.13 : 알켄의 산화적 분열: Ozonolysis

Reactions of Alkenes

9.4K Views

article

8.14 : 알켄의 환원: 촉매 수소화

Reactions of Alkenes

11.5K Views

article

8.15 : 알켄의 환원: 비대칭 촉매 수소화

Reactions of Alkenes

3.2K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유