JoVE Logo

로그인

15.16 : Acid-Catalyzed Aldol Addition Reaction

The aldol reaction of a ketone under acidic conditions successfully forms an unsaturated carbonyl as the final product instead of an aldol. The acid-catalyzed aldol reaction is depicted in Figure 1.

Organic synthesis mechanism, carbonyl reaction, HCl, diagram, intermediate formation, dehydration process.

Figure 1. The acid-catalyzed aldol addition reaction of ketones.

First, as shown in Figure 2, the acid protonates the ketone molecule to form the protonated ketone. The conjugate base of the acid deprotonates the α carbon of the protonated ketone to form the enol.

Organic reaction mechanism, acid-catalyzed hydration, chemical equation diagram, synthesis process.

Figure 2. Formation of the enol.

Next,  as shown in Figure 3, the enol functions as a nucleophile and attacks the second protonated ketone molecule to form a positively charged intermediate. Finally, the loss of a proton generates a β-hydroxy ketone as the aldol addition product, which dehydrates spontaneously under acidic conditions to form the condensation product.

Organic chemistry reaction mechanism, arrow-pushing, cyclohexanol to cyclohexanone conversion diagram.

Figure 3. Nucleophilic addition of the enol and dehydration of the β-hydroxy ketone.

Tags

Acid catalyzed Aldol AdditionKetoneUnsaturated CarbonylProtonated KetoneEnol FormationNucleophilePositively Charged Intermediatehydroxy KetoneDehydrationCondensation Product

장에서 15:

article

Now Playing

15.16 : Acid-Catalyzed Aldol Addition Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.1 : Enols의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.2 : Enolate 이온의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.3 : 에놀(Enol)과 에놀라산(Enolate)의 종류

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.4 : Enolate 메커니즘 규칙

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.5 : Enolates의 위치 선택적 형성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.6 : Enolization의 입체화학적 효과

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.7 : 알데히드와 케톤의 산 촉매 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.5K Views

article

15.8 : 알데히드와 케톤의 염기 촉진 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Views

article

15.9 : 메틸 케톤의 다중 할로겐화: Haloform 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.10 : α-Carboxylic Acid Derivatives의 할로겐화: 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.3K Views

article

15.11 : 카르복실산의 α-브롬화: 지옥-볼하르트-젤린스키 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : α-할로카르보닐 화합물의 반응: 친핵성 치환

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.13 : 에놀의 니트로화(nitrosation)

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.14 : C–C 결합 형성: Aldol 응축 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.5K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유