로그인

When an electric field accelerates a free positive charge q, it is given kinetic energy. The process is analogous to an object accelerated by a gravitational field as if the charge were going down an electrical hill where its electric potential energy is converted into kinetic energy. Of course, the sources of the forces are very different. The work done on a charge q by the electric field in this process helps to develop a definition of electric potential energy.

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken. This is exactly analogous to the gravitational force. When a force is conservative, it is possible to define the potential energy associated with the force. It is usually easier to work with the potential energy because it depends only on position than to calculate the work directly.

When a conservative force does negative work, the system gains potential energy. But when a conservative force does positive work, the system loses potential energy. For conservative forces, the change in potential energy is compensated by the change in the kinetic energy such that the total energy of the system remains constant.

For the system of like charges, the potential energy of the system decreases when charges move away from each other. On the other hand, for the system of opposite charges, the potential energy of the system decreases when charges move toward each other.

Tags
Electric Potential EnergyElectric FieldPositive ChargeKinetic EnergyGravitational ForceConservative ForceCoulomb ForceWork DonePotential Energy ChangeSystem Energy ConservationLike ChargesOpposite Charges

장에서 24:

article

Now Playing

24.1 : Electric Potential Energy

Electric Potential

5.2K Views

article

24.2 : 균일한 전기장에서의 전기 위치 에너지

Electric Potential

4.3K Views

article

24.3 : 2점 전하의 전위 에너지

Electric Potential

4.2K Views

article

24.4 : 전위와 전위차

Electric Potential

4.1K Views

article

24.5 : 전기장에서 전위 찾기

Electric Potential

3.8K Views

article

24.6 : 전위 계산 I

Electric Potential

1.8K Views

article

24.7 : 전위 계산 II

Electric Potential

1.5K Views

article

24.8 : 등전위 표면(Equipotential Surfaces)과 필드 라인(Field Lines)

Electric Potential

3.5K Views

article

24.9 : 등전위 표면 및 도체

Electric Potential

3.2K Views

article

24.10 : 전위에서 전기장 결정

Electric Potential

4.3K Views

article

24.11 : 푸아송과 라플라스 방정식

Electric Potential

2.4K Views

article

24.12 : Van de Graaff 발전기

Electric Potential

1.6K Views

article

24.13 : 전하 분포와 관련된 에너지

Electric Potential

1.4K Views

article

24.14 : 정전기 경계 조건

Electric Potential

355 Views

article

24.15 : 두 번째 고유성 정리

Electric Potential

915 Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유