Inductively coupled plasma (ICP) is the common plasma source used in atomic emission spectroscopy (AES), a technique that detects and analyzes various elements in a sample. This method is often called inductively coupled plasma atomic emission spectroscopy (ICP-AES).

There are three main types of inductively coupled plasma atomic emission spectroscopy (ICP-AES) instruments: sequential, simultaneous multichannel, and Fourier transform instruments, with the latter being less commonly used. Sequential ICP-AES analyzes each element individually, where the instrument is programmed to move from one element's line to another, pausing a few seconds at each to measure line intensities satisfactorily. On the other hand, multichannel instruments are designed to measure the intensities of emission lines for multiple elements simultaneously or nearly so. While sequential instruments are more straightforward, they require more time and sample consumption, making them costlier in the long run.

Sequential and multichannel emission spectrometers can utilize either a classical grating spectrometer or an echelle spectrometer. Grating monochromators, often featured in sequential instruments, use a holographic grating with 2400 or 3600 grooves per millimeter. The grating is rotated with a digitally controlled stepper motor to focus different wavelengths sequentially and precisely on the exit slit. Slew-scan spectrometers are sequential instruments that scan very rapidly to a wavelength near a line of interest before slowing down to scan across the line in small steps. This method minimizes time spent in non-useful wavelength regions.

On the other hand, an echelle spectrometer can operate as either a scanning instrument or a simultaneous multichannel spectrometer. Simultaneous multichannel instruments incorporate either a polychromator or a spectrograph. Polychromators contain a series of photomultiplier tubes for detection, but spectrographs use two-dimensional charge-injection devices (CIDs) or charge-coupled devices (CCDs) as transducers. In some multichannel emission spectrometers, photomultipliers are located behind fixed slits along the focal curve of a grating polychromator.

Though not widely used in AES, Fourier transform spectrometers offer benefits like wide wavelength coverage, speed, high resolution, highly accurate wavelength measurements, large dynamic range, compact size, and large optical throughput. Overall, AES instruments provide different capabilities, from sequential scanning to simultaneous multichannel detection and Fourier transform analysis, enabling researchers and analysts to choose the most suitable approach for their specific analytical needs.

장에서 14:

article

Now Playing

14.13 : Inductively Coupled Plasma Atomic Emission Spectroscopy: Instrumentation

Atomic Spectroscopy

86 Views

article

14.1 : Atomic Spectroscopy: Absorption, Emission, and Fluorescence

Atomic Spectroscopy

260 Views

article

14.2 : 원자 분광법: 온도의 영향

Atomic Spectroscopy

120 Views

article

14.3 : Atomic Absorption Spectroscopy: 개요

Atomic Spectroscopy

196 Views

article

14.4 : 원자 흡수 분광법(Atomic Absorption Spectroscopy): 계측

Atomic Spectroscopy

156 Views

article

14.5 : Atomic Absorption Spectroscopy: 방사선 및 광원

Atomic Spectroscopy

148 Views

article

14.6 : 원자 흡수 분광법: 분무 방법

Atomic Spectroscopy

118 Views

article

14.7 : 원자 흡수 분광법: 간섭

Atomic Spectroscopy

205 Views

article

14.8 : 원자 흡수 분광법: 실험실

Atomic Spectroscopy

92 Views

article

14.9 : 원자 방출 분광법(Atomic Emission Spectroscopy): 개요

Atomic Spectroscopy

231 Views

article

14.10 : 원자 방출 분광법(Atomic Emission Spectroscopy): 계측

Atomic Spectroscopy

104 Views

article

14.11 : 원자 방출 분광법: 간섭

Atomic Spectroscopy

55 Views

article

14.12 : Inductively Coupled Plasma Atomic Emission Spectroscopy: 원리

Atomic Spectroscopy

261 Views

article

14.14 : 원자 방출 분광법: 실험실

Atomic Spectroscopy

66 Views

article

14.15 : 원자 형광 분광법(Atomic Fluorescence Spectroscopy)

Atomic Spectroscopy

68 Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유