Clark Y-14 Wing Performance: Deployment of High-lift Devices (Flaps and Slats)

Overview

Source: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire

A wing is the major lift-generating apparatus in an airplane. Wing performance can be further enhanced by deploying high-lift devices, such as flaps (at the trailing edge) and slats (at the leading edge) during takeoff or landing.

In this experiment, a wind tunnel is utilized to generate certain airspeeds, and a Clark Y-14 wing with a flap and slat is used to collect and calculate data, such as the lift, drag and pitching moment coefficient. A Clark Y-14 airfoil is shown in Figure 1 and has a thickness of 14% and is flat on the lower surface from 30% of the chord to the back. Here, wind tunnel testing is used to demonstrate how the aerodynamic performance of a Clark Y-14 wing is affected by high-lift devices, such as flaps and slats.

Figure 1. Clark Y-14 airfoil profile.

Procedure
  1. For this procedure, use an aerodynamics wind tunnel with a test section of 1 ft x 1 ft and a maximum operating airspeed of 140 mph. The wind tunnel must be equipped with a data acquisition system (able to measure angle of attack, normal force, axial force and pitching moment) and a sting balance.
  2. Open the test section, and install the wing on the sting balance. Start with clean wing configuration.
  3. Place a handheld inclinometer on the sting balance, and adjust the pitch angle adjustment knob to set the sting balance

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

The results of the clean wing configuration are shown in Table 1. Figures 6 - 8 show all three coefficients vs angle of attack, α, for all four configurations. From Figure 6, both the flap and slat enhanced the lift coefficient, but in different ways. Comparing the clean wing and the slat lift curve, the two curves are almost overlapping at low angles of attack. The clean wing lift curve peaks to about 0.9 at 12°, but the slat curve continues to rise to 1. 4 at 18°. This in

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

Lift generation can be enhanced by the deployment of high-lift devices, such as flaps and slats. Most airplanes are equipped with flaps, and all commercial transport airplanes have both flaps and slats. It is critical to characterize the performance of a wing with flaps and slats during aircraft development.

In this demonstration, a Clark Y-14 wing with a flap and a slat was evaluated in a wind tunnel. The forces and moment measurements were collected to determine the lift, drag and pitching m

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. John D. Anderson (2017), Fundamentals of Aerodynamics, 6th Edition, ISBN: 978-1-259-12991-9, McGraw-Hill
Tags
Clark Y 14Wing PerformanceHigh lift DevicesFlapsSlatsLift generating ApparatusWing GeometryPressure DifferentialSurface AreaWing Cross SectionAirfoilChord LineCamberPositive CamberWind SpeedTakeoffLandingLeading EdgeTrailing EdgeSlatFlapLift CoefficientDrag Coefficient

건너뛰기...

0:01

Concepts

3:18

Evaluating the Performance of a Clark Y-14 Wing in a Wind Tunnel

6:13

Results

이 컬렉션의 비디오:

article

Now Playing

Clark Y-14 Wing Performance: Deployment of High-lift Devices (Flaps and Slats)

Aeronautical Engineering

13.2K Views

article

모형 항공기의 공기 역학적 성능: DC-6B

Aeronautical Engineering

8.1K Views

article

프로펠러 특성: 성능 관련 피치, 직경 및 블레이드 수의 변화

Aeronautical Engineering

26.0K Views

article

에어포일 동작: Clark Y-14 날개의 압력 분포

Aeronautical Engineering

20.8K Views

article

난류 구체 방식: 풍동 흐름 품질 평가

Aeronautical Engineering

8.6K Views

article

교차 원통형 흐름: 압력 분포 측정 및 항력 계수 추정

Aeronautical Engineering

16.0K Views

article

노즐 분석: 수렴 및 수렴 전달 노즐에 따른 마하수 및 압력의 변화

Aeronautical Engineering

37.6K Views

article

슐리렌 이미징: 초음속 흐름 특징을 시각화하는 기술

Aeronautical Engineering

11.2K Views

article

회류 수조 흐름 시각화: 델타 날개 위 첨단 소용돌이 관찰

Aeronautical Engineering

7.8K Views

article

표면 염료 흐름 시각화: 초음속 흐름 내 흐름맥 패턴을 관찰하는 정성적 방법

Aeronautical Engineering

4.8K Views

article

피트 정압관: 풍량 측정 장치

Aeronautical Engineering

48.4K Views

article

항온 풍속 측정: 난류 경계층 흐름 연구 도구

Aeronautical Engineering

7.1K Views

article

압력 변환기: 피트 정압관을 사용한 보정

Aeronautical Engineering

8.4K Views

article

실시간 비행 제어: 임베디드 센서 교정 및 데이터 수집

Aeronautical Engineering

10.0K Views

article

멀티콥터 공기역학: 헥사콥터 추력 특성화

Aeronautical Engineering

9.0K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유