Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Neuroscience

Preparing Acute Brain Slices from the Dorsal Pole of the Hippocampus from Adult Rodents

Published: September 10th, 2020

DOI:

10.3791/61699

Abstract

Whole-cell patch-clamp recordings from acute rodent brain slices are a mainstay of modern neurophysiological research, allowing precise measurement of cellular and synaptic properties. Nevertheless, there is an ever increasing need to perform correlated analyses between different experimental modes in addition to slice electrophysiology, for example: immunohistochemistry, molecular biology, in vivo imaging or electrophysiological recording; to answer evermore complex questions of brain function. However, making meaningful conclusions from these various experimental approaches is not straightforward, as even within relatively well described brain structures, a high degree of sub-regional variation of cellular function exists. Nowhere is this better exemplified than in the CA1 of the hippocampus, which has well-defined dorso-ventral properties, based on cellular and molecular properties. Nevertheless, many published studies examine protein expression patterns or behaviorally correlated in vivo activity in the dorsal extent of the hippocampus; and explain findings mechanistically with cellular electrophysiology from the ventro-medial region. This is further confounded by the fact that many acute slice electrophysiological experiments are performed in juvenile animals, when other experimental modes are performed in more mature animals. To address these issues, this method incorporates transcardial perfusion of mature (>60 day old rodents) with artificial cerebrospinal fluid followed by preparation of modified coronal slices including the septal pole of the dorsal hippocampus to record from CA1 pyramidal cells. This process leads to the generation of healthy acute slices of dorsal hippocampus allowing for slice-based cellular electrophysiological interrogation matched to other measures.

Explore More Videos

Keywords Acute Brain Slices

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved