JoVE Logo

Meld u aan

Ultraviolet-Visible (UV-Vis) Spectroscopy

Overzicht

Source: Laboratory of Dr. B. Jill Venton - University of Virginia

Ultraviolet-visible (UV-Vis) spectroscopy is one of the most popular analytical techniques because it is very versatile and able to detect nearly every molecule. With UV-Vis spectroscopy, the UV-Vis light is passed through a sample and the transmittance of light by a sample is measured. From the transmittance (T), the absorbance can be calculated as A=-log (T). An absorbance spectrum is obtained that shows the absorbance of a compound at different wavelengths. The amount of absorbance at any wavelength is due to the chemical structure of the molecule.

UV-Vis can be used in a qualitative manner, to identify functional groups or confirm the identity of a compound by matching the absorbance spectrum. It can also be used in a quantitative manner, as concentration of the analyte is related to the absorbance using Beer's Law. UV-Vis spectroscopy is used to quantify the amount of DNA or protein in a sample, for water analysis, and as a detector for many types of chromatography. Kinetics of chemical reactions are also measured with UV-Vis spectroscopy by taking repeated UV-Vis measurements over time. UV-Vis measurements are generally taken with a spectrophotometer. UV-Vis is also a very popular detector for other analytical techniques, such as chromatography, because it can detect many compounds.

Typically, UV-Vis is not the most sensitive spectroscopy technique, because not a lot of light is absorbed over a short path length. Other spectroscopy techniques such as fluorescence have higher sensitivity, but they are not as generally applicable, as most molecules are not fluorescent. UV-Vis has a similar sensitivity to other absorbance measurements, such as infrared spectroscopy.

Procedure

1. Calibrate the Spectrometer

  1. Turn on the UV-Vis spectrometer and allow the lamps to warm up for an appropriate period of time (around 20 min) to stabilize them.
  2. Fill a cuvette with the solvent for the sample and make sure the outside is clean. This will serve as a blank and help account for light losses due to scattering or absorption by the solvent.
  3. Place the cuvette in the spectrometer. Make sure to align the cuvette properly, as often the cuvette has two sides, which are meant for hand

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Resultaten

UV-Vis can be used to obtain a spectrum of colored compounds. In Figure 1A, the absorbance spectrum of a blue dye is shown. The background shows the colors of light in the visible spectrum. The blue dye has a λmax absorbance in the orange/red. Figure 1B shows a spectrum of a red dye, with λmax in the green.

Kinetics can be measured from a plot of absorbance at one wavelength over time. Fi

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Toepassing en samenvatting

UV-Vis is used in many chemical analyses. It is used to quantitate the amount of protein in a solution, as most proteins absorb strongly at 280 nm. Figure 3 shows an example spectra of cytochrome C, which has a high absorbance at 280 and also at 450 because of a heme group. UV-Vis is also used as a standard technique to quantify the amount of DNA in a sample, as all the bases absorb strongly at 260 nm. RNA and proteins also absorb at 260 nm, so absorbance at other wavelengths can be measured to check for

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags

UV Vis SpectroscopyAnalytical TechniqueLaboratorySample AbsorptionTransmissionAbsorbanceQuantitative AnalysisQualitative AnalysisAbsorbance SpectrumConcentration DeterminationCompound IdentificationReaction KineticsPhoton AbsorptionGround StateEnergy StateBand GapUnique Absorbance SpectraBeer s LawMolar Attenuation CoefficientPath Length

Ga naar...

0:00

Overview

1:11

Principles of UV-Vis Spectroscopy

3:46

Absorbance Measurements with UV-Vis Spectroscopy

5:30

Kinetics Experiments with UV-Vis Spectroscopy

6:47

Applications

8:57

Summary

Video's uit deze collectie:

article

Now Playing

Ultraviolet-Visible (UV-Vis) Spectroscopy

Analytical Chemistry

623.8K weergaven

article

Sample Preparation for Analytical Characterization

Analytical Chemistry

84.8K weergaven

article

Internal Standards

Analytical Chemistry

204.9K weergaven

article

Method of Standard Addition

Analytical Chemistry

320.2K weergaven

article

Calibration Curves

Analytical Chemistry

797.1K weergaven

article

Raman Spectroscopy for Chemical Analysis

Analytical Chemistry

51.2K weergaven

article

X-ray Fluorescence (XRF)

Analytical Chemistry

25.4K weergaven

article

Gas Chromatography (GC) with Flame-Ionization Detection

Analytical Chemistry

282.1K weergaven

article

High-Performance Liquid Chromatography (HPLC)

Analytical Chemistry

384.8K weergaven

article

Ion-Exchange Chromatography

Analytical Chemistry

264.6K weergaven

article

Capillary Electrophoresis (CE)

Analytical Chemistry

94.0K weergaven

article

Introduction to Mass Spectrometry

Analytical Chemistry

112.3K weergaven

article

Scanning Electron Microscopy (SEM)

Analytical Chemistry

87.2K weergaven

article

Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat

Analytical Chemistry

51.4K weergaven

article

Cyclic Voltammetry (CV)

Analytical Chemistry

125.3K weergaven

JoVE Logo

Privacy

Gebruiksvoorwaarden

Beleid

Onderzoek

Onderwijs

Over JoVE

Auteursrecht © 2025 MyJoVE Corporation. Alle rechten voorbehouden