Zaloguj się

Chapter 2

Vectors and Scalars

Wprowadzenie do skalarów
Wprowadzenie do skalarów
Many familiar physical quantities can be specified completely by giving a single number and the appropriate unit. For example, "a class period lasts ...
Wprowadzenie do wektorów
Wprowadzenie do wektorów
To define some physical quantities, there is a need to specify both magnitude as well as direction. For example, when the U.S. Coast Guard dispatches a ...
Składowe wektorowe w kartezjańskim układzie współrzędnych
Składowe wektorowe w kartezjańskim układzie współrzędnych
Vectors are usually described in terms of their components in a coordinate system. Even in everyday life, we naturally invoke the concept of orthogonal ...
Współrzędne biegunowe i cylindryczne
Współrzędne biegunowe i cylindryczne
The Cartesian coordinate system is a very convenient tool to use when describing the displacements and velocities of objects and the forces acting on ...
Współrzędne sferyczne
Współrzędne sferyczne
Spherical coordinate systems are preferred over Cartesian, polar, or cylindrical coordinates for systems with spherical symmetry. For example, to describe ...
Algebra wektorowa: metoda graficzna
Algebra wektorowa: metoda graficzna
Vectors can be multiplied by scalars, added to other vectors, or subtracted from other vectors. The vector sum of two (or more) vectors is called the ...
Algebra wektorowa: metoda składników
Algebra wektorowa: metoda składników
It is cumbersome to find the magnitudes of vectors using the parallelogram rule or using the graphical method to perform mathematical operations like ...
Iloczyn skalarny (iloczyn skalarny)
Iloczyn skalarny (iloczyn skalarny)
The scalar multiplication of two vectors is known as the scalar or dot product. As the name indicates, the scalar product of two vectors results in a ...
Iloczyn wektorowy (iloczyn wektorowy)
Iloczyn wektorowy (iloczyn wektorowy)
Vector multiplication of two vectors yields a vector product, with the magnitude equal to the product of the individual vectors multiplied by the sine of ...
Potrójne iloczyny skalarne i wektorowe
Potrójne iloczyny skalarne i wektorowe
Two vectors can be multiplied using a scalar product or a vector product. The resultant of a scalar product is scalar, while with vector products, the ...
Operator gradientu i del
Operator gradientu i del
In mathematics and physics, the gradient and del operator are fundamental concepts used to describe the behavior of functions and fields in space. The ...
Rozbieżność i zawijanie
Rozbieżność i zawijanie
The divergence of a vector field at a point is the net outward flow of the flux out of a small volume through a closed surface enclosing the volume, as ...
Drugie instrumenty pochodne i operator Laplace'a
Drugie instrumenty pochodne i operator Laplace'a
The first order operators using the del operator include the gradient, divergence and curl. Certain combinations of first order operators on a scalar or ...
Całki liniowe, powierzchniowe i objętościowe
Całki liniowe, powierzchniowe i objętościowe
A line integral for a vector field is defined as the integral of the dot product of a vector function with an infinitesimal displacement vector along a ...
Rozbieżność i twierdzenia Stokesa
Rozbieżność i twierdzenia Stokesa
The divergence and Stokes' theorems are a variation of Green's theorem in a higher dimension. They are also a generalization of the fundamental ...
JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone