Spherical coordinate systems are preferred over Cartesian, polar, or cylindrical coordinates for systems with spherical symmetry. For example, to describe the surface of a sphere, Cartesian coordinates require all three coordinates. On the other hand, the spherical coordinate system requires only one parameter: the sphere's radius. As a result, the complicated mathematical calculations become simple. Spherical coordinates are used in science and engineering applications like electric and gravitational fields. One of the other common applications of spherical coordinates is in the Earth's latitude and longitude system, which is used for navigational purposes.

Spherical coordinates belong to the family of curvilinear coordinates. These are the extension of polar coordinates and are used to describe a vector's position in three-dimensional space. A vector in a spherical coordinate system is defined using the radial, polar, and azimuthal scalar components. The radial component, which ranges from zero to infinity, specifies the vector's distance from its origin. The polar angle ranges from zero to π and measures the angle between the positive z-axis and the vector. The azimuthal angle, which ranges from zero to 2π, measures the angle between the x-axis and the orthogonal projection of the vector onto the xy-plane. A surface with a constant radius traces a sphere in a three-dimensional spherical coordinate system. On the other hand, a surface with a constant polar angle forms a half-cone, and a surface with a constant azimuthal angle forms a half-plane.

The transformation equations are used to convert a vector in spherical coordinates to Cartesian coordinates and cylindrical coordinates.

Tagi
Spherical CoordinatesCartesian CoordinatesPolar CoordinatesCylindrical CoordinatesSpherical SymmetryRadiusVector PositionThree dimensional SpaceRadial ComponentPolar AngleAzimuthal AngleCurvilinear CoordinatesTransformation EquationsElectric FieldsGravitational FieldsLatitude And Longitude

Z rozdziału 2:

article

Now Playing

2.5 : Spherical Coordinates

Vectors and Scalars

9.5K Wyświetleń

article

2.1 : Wprowadzenie do skalarów

Vectors and Scalars

13.4K Wyświetleń

article

2.2 : Wprowadzenie do wektorów

Vectors and Scalars

13.0K Wyświetleń

article

2.3 : Składowe wektorowe w kartezjańskim układzie współrzędnych

Vectors and Scalars

17.4K Wyświetleń

article

2.4 : Współrzędne biegunowe i cylindryczne

Vectors and Scalars

13.8K Wyświetleń

article

2.6 : Algebra wektorowa: metoda graficzna

Vectors and Scalars

10.9K Wyświetleń

article

2.7 : Algebra wektorowa: metoda składników

Vectors and Scalars

12.9K Wyświetleń

article

2.8 : Iloczyn skalarny (iloczyn skalarny)

Vectors and Scalars

7.9K Wyświetleń

article

2.9 : Iloczyn wektorowy (iloczyn wektorowy)

Vectors and Scalars

9.0K Wyświetleń

article

2.10 : Potrójne iloczyny skalarne i wektorowe

Vectors and Scalars

2.1K Wyświetleń

article

2.11 : Operator gradientu i del

Vectors and Scalars

2.3K Wyświetleń

article

2.12 : Rozbieżność i zawijanie

Vectors and Scalars

1.5K Wyświetleń

article

2.13 : Drugie instrumenty pochodne i operator Laplace'a

Vectors and Scalars

1.1K Wyświetleń

article

2.14 : Całki liniowe, powierzchniowe i objętościowe

Vectors and Scalars

2.0K Wyświetleń

article

2.15 : Rozbieżność i twierdzenia Stokesa

Vectors and Scalars

1.3K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone