Accedi

Spherical coordinate systems are preferred over Cartesian, polar, or cylindrical coordinates for systems with spherical symmetry. For example, to describe the surface of a sphere, Cartesian coordinates require all three coordinates. On the other hand, the spherical coordinate system requires only one parameter: the sphere's radius. As a result, the complicated mathematical calculations become simple. Spherical coordinates are used in science and engineering applications like electric and gravitational fields. One of the other common applications of spherical coordinates is in the Earth's latitude and longitude system, which is used for navigational purposes.

Spherical coordinates belong to the family of curvilinear coordinates. These are the extension of polar coordinates and are used to describe a vector's position in three-dimensional space. A vector in a spherical coordinate system is defined using the radial, polar, and azimuthal scalar components. The radial component, which ranges from zero to infinity, specifies the vector's distance from its origin. The polar angle ranges from zero to π and measures the angle between the positive z-axis and the vector. The azimuthal angle, which ranges from zero to 2π, measures the angle between the x-axis and the orthogonal projection of the vector onto the xy-plane. A surface with a constant radius traces a sphere in a three-dimensional spherical coordinate system. On the other hand, a surface with a constant polar angle forms a half-cone, and a surface with a constant azimuthal angle forms a half-plane.

The transformation equations are used to convert a vector in spherical coordinates to Cartesian coordinates and cylindrical coordinates.

Tags
Spherical CoordinatesCartesian CoordinatesPolar CoordinatesCylindrical CoordinatesSpherical SymmetryRadiusVector PositionThree dimensional SpaceRadial ComponentPolar AngleAzimuthal AngleCurvilinear CoordinatesTransformation EquationsElectric FieldsGravitational FieldsLatitude And Longitude

Dal capitolo 2:

article

Now Playing

2.5 : Spherical Coordinates

Vectors and Scalars

9.7K Visualizzazioni

article

2.1 : Introduzione agli scalari

Vectors and Scalars

13.7K Visualizzazioni

article

2.2 : Introduzione ai vettori

Vectors and Scalars

13.4K Visualizzazioni

article

2.3 : Componenti vettoriali nel sistema di coordinate cartesiane

Vectors and Scalars

18.0K Visualizzazioni

article

2.4 : Coordinate polari e cilindriche

Vectors and Scalars

14.1K Visualizzazioni

article

2.6 : Algebra vettoriale: metodo grafico

Vectors and Scalars

11.3K Visualizzazioni

article

2.7 : Algebra vettoriale: metodo dei componenti

Vectors and Scalars

13.3K Visualizzazioni

article

2.8 : Prodotto scalare (prodotto scalare )

Vectors and Scalars

8.0K Visualizzazioni

article

2.9 : Prodotto vettoriale (prodotto incrociato)

Vectors and Scalars

9.2K Visualizzazioni

article

2.10 : Prodotti Scalari e Tripli Vettoriali

Vectors and Scalars

2.2K Visualizzazioni

article

2.11 : Operatore Gradiente e Del

Vectors and Scalars

2.4K Visualizzazioni

article

2.12 : Divergenza e ricciolo

Vectors and Scalars

1.6K Visualizzazioni

article

2.13 : Derivate seconde e operatore di Laplace

Vectors and Scalars

1.1K Visualizzazioni

article

2.14 : Integrali di linea, superficie e volume

Vectors and Scalars

2.1K Visualizzazioni

article

2.15 : Divergenza e teoremi di Stokes

Vectors and Scalars

1.4K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati