Anmelden

Spherical coordinate systems are preferred over Cartesian, polar, or cylindrical coordinates for systems with spherical symmetry. For example, to describe the surface of a sphere, Cartesian coordinates require all three coordinates. On the other hand, the spherical coordinate system requires only one parameter: the sphere's radius. As a result, the complicated mathematical calculations become simple. Spherical coordinates are used in science and engineering applications like electric and gravitational fields. One of the other common applications of spherical coordinates is in the Earth's latitude and longitude system, which is used for navigational purposes.

Spherical coordinates belong to the family of curvilinear coordinates. These are the extension of polar coordinates and are used to describe a vector's position in three-dimensional space. A vector in a spherical coordinate system is defined using the radial, polar, and azimuthal scalar components. The radial component, which ranges from zero to infinity, specifies the vector's distance from its origin. The polar angle ranges from zero to π and measures the angle between the positive z-axis and the vector. The azimuthal angle, which ranges from zero to 2π, measures the angle between the x-axis and the orthogonal projection of the vector onto the xy-plane. A surface with a constant radius traces a sphere in a three-dimensional spherical coordinate system. On the other hand, a surface with a constant polar angle forms a half-cone, and a surface with a constant azimuthal angle forms a half-plane.

The transformation equations are used to convert a vector in spherical coordinates to Cartesian coordinates and cylindrical coordinates.

Tags
Spherical CoordinatesCartesian CoordinatesPolar CoordinatesCylindrical CoordinatesSpherical SymmetryRadiusVector PositionThree dimensional SpaceRadial ComponentPolar AngleAzimuthal AngleCurvilinear CoordinatesTransformation EquationsElectric FieldsGravitational FieldsLatitude And Longitude

Aus Kapitel 2:

article

Now Playing

2.5 : Spherical Coordinates

Vectors and Scalars

9.7K Ansichten

article

2.1 : Einführung in die Skalare

Vectors and Scalars

13.7K Ansichten

article

2.2 : Einführung in Vektoren

Vectors and Scalars

13.4K Ansichten

article

2.3 : Vektorkomponenten im kartesischen Koordinatensystem

Vectors and Scalars

17.9K Ansichten

article

2.4 : Polare und zylindrische Koordinaten

Vectors and Scalars

14.0K Ansichten

article

2.6 : Vektoralgebra: Grafische Methode

Vectors and Scalars

11.3K Ansichten

article

2.7 : Vektoralgebra: Methode der Komponenten

Vectors and Scalars

13.2K Ansichten

article

2.8 : Skalares Produkt (Punktprodukt)

Vectors and Scalars

8.0K Ansichten

article

2.9 : Vektorprodukt (Kreuzprodukt)

Vectors and Scalars

9.2K Ansichten

article

2.10 : Scalar und Vector Triple Produkte

Vectors and Scalars

2.1K Ansichten

article

2.11 : Gradienten- und Entf-Operator

Vectors and Scalars

2.3K Ansichten

article

2.12 : Divergenz und Kräuselung

Vectors and Scalars

1.5K Ansichten

article

2.13 : Zweite Ableitungen und Laplace-Operator

Vectors and Scalars

1.1K Ansichten

article

2.14 : Linien-, Flächen- und Volumenintegrale

Vectors and Scalars

2.1K Ansichten

article

2.15 : Divergenz und Stokes-Theoreme

Vectors and Scalars

1.4K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten