Zaloguj się

By definition, a spherically symmetric body has the same moment of inertia about any axis passing through its center of mass. This situation changes if there is no spherical symmetry. Since most rigid bodies are not spherically symmetric, these require special treatment.

The relationship between the angular momentum of any rigid body and its angular velocity, both of which are vectors, involves the moment of inertia. The moment of inertia is a scalar quantity only for spherically symmetric rigid bodies. Otherwise, the moment of inertia is not a scalar quantity and is called a tensor. Scalars and vectors are special cases of tensors.

To relate angular momentum and velocity vectors, six independent values are required to describe the moments of inertia along the three orthogonal axes in 3D space. In special cases, such as when unique independent axes of rotation are chosen, only three numbers are sufficient to describe moment of inertia. These are called the principal axes of rotation and principal moments of inertia, respectively.

An object with three unequal moments of inertia is called an asymmetric top. The mathematics of its rotation is complicated, but it can be simplified by considering conservation principles. The angular momentum vector is constant if there is no external torque. Its magnitude is also conserved. This condition provides one constraint on the angular speeds. The other constraint is that the total kinetic energy is also conserved.

Tagi
Asymmetric TopMoment Of InertiaAngular MomentumAngular VelocityRigid BodiesTensorPrincipal AxesConservation PrinciplesExternal TorqueKinetic Energy

Z rozdziału 11:

article

Now Playing

11.12 : Rotation of Asymmetric Top

Dynamics of Rotational Motions

769 Wyświetleń

article

11.1 : Moment obrotowy

Dynamics of Rotational Motions

11.7K Wyświetleń

article

11.2 : Obliczenia użytecznego momentu obrotowego

Dynamics of Rotational Motions

8.7K Wyświetleń

article

11.3 : Równanie dynamiki obrotowej

Dynamics of Rotational Motions

4.8K Wyświetleń

article

11.4 : Toczenie bez poślizgu

Dynamics of Rotational Motions

3.3K Wyświetleń

article

11.5 : Toczenie z poślizgiem

Dynamics of Rotational Motions

4.5K Wyświetleń

article

11.6 : Praca i moc dla ruchu obrotowego

Dynamics of Rotational Motions

5.0K Wyświetleń

article

11.7 : Twierdzenie o energii pracy dla ruchu obrotowego

Dynamics of Rotational Motions

5.6K Wyświetleń

article

11.8 : Moment pędu: Pojedyncza cząstka

Dynamics of Rotational Motions

5.9K Wyświetleń

article

11.9 : Moment pędu: ciało sztywne

Dynamics of Rotational Motions

8.5K Wyświetleń

article

11.10 : Zasada zachowania momentu pędu

Dynamics of Rotational Motions

9.9K Wyświetleń

article

11.11 : Zasada zachowania momentu pędu: zastosowanie

Dynamics of Rotational Motions

10.5K Wyświetleń

article

11.13 : Żyroskop

Dynamics of Rotational Motions

2.8K Wyświetleń

article

11.14 : Żyroskop: Precesja

Dynamics of Rotational Motions

3.9K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone