Accedi

By definition, a spherically symmetric body has the same moment of inertia about any axis passing through its center of mass. This situation changes if there is no spherical symmetry. Since most rigid bodies are not spherically symmetric, these require special treatment.

The relationship between the angular momentum of any rigid body and its angular velocity, both of which are vectors, involves the moment of inertia. The moment of inertia is a scalar quantity only for spherically symmetric rigid bodies. Otherwise, the moment of inertia is not a scalar quantity and is called a tensor. Scalars and vectors are special cases of tensors.

To relate angular momentum and velocity vectors, six independent values are required to describe the moments of inertia along the three orthogonal axes in 3D space. In special cases, such as when unique independent axes of rotation are chosen, only three numbers are sufficient to describe moment of inertia. These are called the principal axes of rotation and principal moments of inertia, respectively.

An object with three unequal moments of inertia is called an asymmetric top. The mathematics of its rotation is complicated, but it can be simplified by considering conservation principles. The angular momentum vector is constant if there is no external torque. Its magnitude is also conserved. This condition provides one constraint on the angular speeds. The other constraint is that the total kinetic energy is also conserved.

Tags
Asymmetric TopMoment Of InertiaAngular MomentumAngular VelocityRigid BodiesTensorPrincipal AxesConservation PrinciplesExternal TorqueKinetic Energy

Dal capitolo 11:

article

Now Playing

11.12 : Rotation of Asymmetric Top

Dynamics of Rotational Motions

771 Visualizzazioni

article

11.1 : Coppia

Dynamics of Rotational Motions

11.8K Visualizzazioni

article

11.2 : Calcoli della coppia netta

Dynamics of Rotational Motions

8.7K Visualizzazioni

article

11.3 : Equazione della dinamica rotazionale

Dynamics of Rotational Motions

4.8K Visualizzazioni

article

11.4 : Rotolamento senza scivolare

Dynamics of Rotational Motions

3.3K Visualizzazioni

article

11.5 : Rotolamento con scivolamento

Dynamics of Rotational Motions

4.5K Visualizzazioni

article

11.6 : Lavoro e potenza per il movimento rotatorio

Dynamics of Rotational Motions

5.0K Visualizzazioni

article

11.7 : Teorema dell'energia lavoro per il moto rotatorio

Dynamics of Rotational Motions

5.6K Visualizzazioni

article

11.8 : Momento angolare: singola particella

Dynamics of Rotational Motions

5.9K Visualizzazioni

article

11.9 : Momento angolare: corpo rigido

Dynamics of Rotational Motions

8.5K Visualizzazioni

article

11.10 : Conservazione del momento angolare

Dynamics of Rotational Motions

9.9K Visualizzazioni

article

11.11 : Conservazione del momento angolare: applicazione

Dynamics of Rotational Motions

10.5K Visualizzazioni

article

11.13 : Giroscopio

Dynamics of Rotational Motions

2.8K Visualizzazioni

article

11.14 : Giroscopio: Precessione

Dynamics of Rotational Motions

3.9K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati