Войдите в систему

By definition, a spherically symmetric body has the same moment of inertia about any axis passing through its center of mass. This situation changes if there is no spherical symmetry. Since most rigid bodies are not spherically symmetric, these require special treatment.

The relationship between the angular momentum of any rigid body and its angular velocity, both of which are vectors, involves the moment of inertia. The moment of inertia is a scalar quantity only for spherically symmetric rigid bodies. Otherwise, the moment of inertia is not a scalar quantity and is called a tensor. Scalars and vectors are special cases of tensors.

To relate angular momentum and velocity vectors, six independent values are required to describe the moments of inertia along the three orthogonal axes in 3D space. In special cases, such as when unique independent axes of rotation are chosen, only three numbers are sufficient to describe moment of inertia. These are called the principal axes of rotation and principal moments of inertia, respectively.

An object with three unequal moments of inertia is called an asymmetric top. The mathematics of its rotation is complicated, but it can be simplified by considering conservation principles. The angular momentum vector is constant if there is no external torque. Its magnitude is also conserved. This condition provides one constraint on the angular speeds. The other constraint is that the total kinetic energy is also conserved.

Теги
Asymmetric TopMoment Of InertiaAngular MomentumAngular VelocityRigid BodiesTensorPrincipal AxesConservation PrinciplesExternal TorqueKinetic Energy

Из главы 11:

article

Now Playing

11.12 : Rotation of Asymmetric Top

Dynamics of Rotational Motions

771 Просмотры

article

11.1 : Вращающий момент

Dynamics of Rotational Motions

11.8K Просмотры

article

11.2 : Расчет чистого крутящего момента

Dynamics of Rotational Motions

8.7K Просмотры

article

11.3 : Уравнение вращательной динамики

Dynamics of Rotational Motions

4.8K Просмотры

article

11.4 : Скатывание без скольжения

Dynamics of Rotational Motions

3.3K Просмотры

article

11.5 : Прокатка с проскальзыванием

Dynamics of Rotational Motions

4.5K Просмотры

article

11.6 : Работа и мощность для вращательного движения

Dynamics of Rotational Motions

5.0K Просмотры

article

11.7 : Теорема о рабочей энергии для вращательного движения

Dynamics of Rotational Motions

5.6K Просмотры

article

11.8 : Угловой момент: одиночная частица

Dynamics of Rotational Motions

5.9K Просмотры

article

11.9 : Угловой момент: твердое тело

Dynamics of Rotational Motions

8.5K Просмотры

article

11.10 : Сохранение момента импульса

Dynamics of Rotational Motions

9.9K Просмотры

article

11.11 : Сохранение углового момента: применение

Dynamics of Rotational Motions

10.5K Просмотры

article

11.13 : Гироскоп

Dynamics of Rotational Motions

2.8K Просмотры

article

11.14 : Гироскоп: прецессия

Dynamics of Rotational Motions

3.9K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены