The non-destructive nature and ability to provide valuable chemical information make IR spectroscopy a versatile technique with broad applications in various scientific and industrial fields. IR spectroscopy is commonly used to identify and characterize organic and inorganic compounds. It provides information about the functional groups present in a molecule and the bonding between atoms. This helps in the structural elucidation of compounds during organic synthesis, pharmaceutical research, and materials science. IR spectroscopy plays a significant role in detecting and quantifying environmental pollutants. It is employed in analyzing air quality by identifying and quantifying atmospheric pollutants. Similarly, it is used to assess water quality and analyze contaminants in soil samples, making IR spectroscopy a critical application in environmental monitoring, pollution control, and remediation efforts.

IR spectroscopy is valuable in forensic science for identifying and analyzing trace evidence at crime scenes. It can provide crucial information about the chemical composition of fibers, explosives, and drugs which helps in linking evidence to suspects and supporting legal investigations. IR spectroscopy is utilized in the fields of art conservation and archaeology. It helps analyze and characterize materials used in artworks, historical artifacts, and cultural heritage objects. By studying the molecular composition of pigments, dyes, binders, and other materials, IR spectroscopy assists in authentication, conservation, and preservation efforts. IR spectroscopy has numerous applications in biomedical research, helping study biomolecules such as proteins, nucleic acids, and carbohydrates. This technique provides insights into the secondary structure of proteins, protein folding, and interactions between biomolecules. It is also used for disease diagnosis, identifying biomarkers, and studying drug-target interactions for drug discovery and development.

Z rozdziału 13:

article

Now Playing

13.16 : Applications of IR Spectroscopy: Overview

Molecular Vibrational Spectroscopy

242 Wyświetleń

article

13.1 : Spektroskopia w podczerwieni (IR): przegląd

Molecular Vibrational Spectroscopy

972 Wyświetleń

article

13.2 : Spektroskopia w podczerwieni: przegląd drgań molekularnych

Molecular Vibrational Spectroscopy

1.4K Wyświetleń

article

13.3 : Spektroskopia IR: prawo Hooke'a Aproksymacja drgań molekularnych

Molecular Vibrational Spectroscopy

776 Wyświetleń

article

13.4 : Spektrometry IR

Molecular Vibrational Spectroscopy

773 Wyświetleń

article

13.5 : Widmo IR

Molecular Vibrational Spectroscopy

656 Wyświetleń

article

13.6 : Częstotliwość absorpcji podczerwieni: Hybrydyzacja

Molecular Vibrational Spectroscopy

482 Wyświetleń

article

13.7 : Częstotliwość absorpcji podczerwieni: Delokalizacja

Molecular Vibrational Spectroscopy

555 Wyświetleń

article

13.8 : Obszar częstotliwości IR: rozciąganie X–H

Molecular Vibrational Spectroscopy

771 Wyświetleń

article

13.9 : Obszar częstotliwości IR: rozciąganie alkinów i nitryli

Molecular Vibrational Spectroscopy

607 Wyświetleń

article

13.10 : Obszar częstotliwości IR: rozciąganie alkenów i karbonylu

Molecular Vibrational Spectroscopy

538 Wyświetleń

article

13.11 : Obszar częstotliwości IR: Obszar odcisku palca

Molecular Vibrational Spectroscopy

537 Wyświetleń

article

13.12 : Szczytowa intensywność widma IR: Ilość wiązań aktywnych w podczerwieni

Molecular Vibrational Spectroscopy

498 Wyświetleń

article

13.13 : Intensywność szczytowa widma IR: Moment dipolowy

Molecular Vibrational Spectroscopy

508 Wyświetleń

article

13.14 : Poszerzenie piku widma IR: Wiązania wodorowe

Molecular Vibrational Spectroscopy

600 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone