Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Environmental bacterioplankton are incubated with a model dissolved organic carbon (DOC) compound and a DNA labeling reagent, bromodeoxyuridine (BrdU). Afterward, DOC-degrading cells are separated from the bulk community based on their elevated BrdU incorporation using fluorescence activated cell sorting (FACS). These cells are then identified by subsequent molecular analyses.
Microbes are major agents mediating the degradation of numerous dissolved organic carbon (DOC) substrates in aquatic environments. However, identification of bacterial taxa that transform specific pools of DOC in nature poses a technical challenge.
Here we describe an approach that couples bromodeoxyuridine (BrdU) incorporation, fluorescence activated cell sorting (FACS), and 16S rRNA gene-based molecular analysis that allows culture-independent identification of bacterioplankton capable of degrading a specific DOC compound in aquatic environments. Triplicate bacterioplankton microcosms are set up to receive both BrdU and a model DOC compound (DOC amendments), or only BrdU (no-addition control). BrdU substitutes the positions of thymidine in newly synthesized bacterial DNA and BrdU-labeled DNA can be readily immunodetected 1,2. Through a 24-hr incubation, bacterioplankton that are able to use the added DOC compound are expected to be selectively activated, and therefore have higher levels of BrdU incorporation (HI cells) than non-responsive cells in the DOC amendments and cells in no-addition controls (low BrdU incorporation cells, LI cells). After fluorescence immunodetection, HI cells are distinguished and physically separated from the LI cells by fluorescence activated cell sorting (FACS) 3. Sorted DOC-responsive cells (HI cells) are extracted for DNA and taxonomically identified through subsequent 16S rRNA gene-based analyses including PCR, clone library construction and sequencing.
1. Water sample processing
Steps 1.3-1.4 are optional for establishing DOC-limited conditions.
2. Microcosm establishment and incubation
3. In situ immunodetection for BrdU Incorporation
Steps 3.8-3.20 use the reagents from the ROCHE In Situ Cell Proliferation Kit, FLUOS following procedures modified from the manufacturer's instructions. Except for PBS, all reagents are provided within the kit.
4. FACS analysis
A procedure for a BD FACSAria flow cytometer and corresponding software is described here.
5. Filter PCR amplification of 16S rRNA genes
Filter PCR procedures are modified from Kirchman et al. 6
6. Representative results:
Representative results are described using a study of putrescine-degrading bacteria as an example. Water samples were collected from a coastal site of Georgia and processed following the procedures described above. FACS analysis revealed that putrescine addition induced development of a group of bacteria with high FITC fluorescence intensity, indicating high BrdU incorporation rate (Figure 1). These cells were designated as high-BrdU-incorporation cells (HIs) and were expected to contain mostly putrescine-degrading bacteria. HIs were missing in the no-addition controls, which only contained cells with lower levels of BrdU incorporation (LIs). LIs were expected to mainly contain bacterioplankton that were unable to use added putrescine. HIs were sorted into separated tubes and then collected onto membrane filters. 16S rRNA gene amplicons were obtained for high HI cells using filter PCR.
Figure 1. Flow cytometric analysis of no-addition control and model-compound-amended (putrescine as an example here) samples collected after 24 h of incubation. Cell distribution analysis was based on (1) fluorescence intensity of FITC labeling (x-axis), which is positively related to level of BrdU incorporation, and (2) side scatter (SSC, y-axis), which is positively related to cell size. Gate notation is based on level of BrdU incorporation, (HI, high-BrdU-incorporation; LI, low-BrdU-incorporation). The relative percentage of HI and LI cells are shown in corresponding gates.
Our approach couples BrdU incorporation, FACS and 16S rDNA analysis to allow species-level identification of bacterioplankton that metabolize individual DOC components in aquatic environments. The BrdU incorporation assay labels bacterial cells based on metabolic activities, which allows analysis only on active bacteria and thus does not include dormant cells. In our approach, BrdU incorporation is in situ immunodetected and bacteria that have different levels of BrdU incorporation are subsequently visualized, g...
No conflicts of interest declared.
Funding of this project was provided by the National Science Foundation grants OCE1029607 (to X.M.) and MCB0702125 (to M.A.M.) and the Gordon and Betty Moore Foundation (to M.A.M.).
Name | Company | Catalog Number | Comments | |
BrdU | Reagent | Sigma-Aldrich | B5002-5G | |
Lysozyme | Reagent | Sigma-Aldrich | L6876-5G | |
Proteinase K | Reagent | Sigma-Aldrich | P2308-25MG | |
In Situ Cell Proliferation Kit, FLUOS | Kit | Roche Group | 11810740001 | Consume more of Anti-BrdU-FLUOS and Incubation buffer per reaction than suggested by the manufacturer. |
Frame-Seal Incubation Chambers | Material | Bio-Rad | SLF-1201 | |
Polycarbonate Membrane Filters (142-mm-diameter, 1.0 μm-pore-size) | Material | EMD Millipore | FALP14250 | |
Polycarbonate Membrane Filters (25-mm-diameter, 0.2 μm-pore-size) | Material | EMD Millipore | FGLP02500 | |
illustra PuReTaq Ready-To-Go PCR Beads | Kit | GE Healthcare | 27-9559-01 | |
QIAquick gel extraction kit | Kit | Qiagen | 28704 | |
FailSafe PCR System | Kit | Epicentre Biotechnologies | FS99060 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone