Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
This article describes a protocol for inducing psychological stress in participants, which enables researchers to measure psychological, physiological and neuroendocrine responses to stress within single participants or between groups.
This article demonstrates a psychological stress protocol for use in a laboratory setting. Protocols that allow researchers to study the biological pathways of the stress response in health and disease are fundamental to the progress of research in stress and anxiety.1 Although numerous protocols exist for inducing stress response in the laboratory, many neglect to provide a naturalistic context or to incorporate aspects of social and psychological stress. Of psychological stress protocols, meta-analysis suggests that the Trier Social Stress Test (TSST) is the most useful and appropriate standardized protocol for studies of stress hormone reactivity.2 In the original description of the TSST, researchers sought to design and evaluate a procedure capable of inducing a reliable stress response in the majority of healthy volunteers.3 These researchers found elevations in heart rate, blood pressure and several endocrine stress markers in response to the TSST (a psychological stressor) compared to a saline injection (a physical stressor).3 Although the TSST has been modified to meet the needs of various research groups, it generally consists of a waiting period upon arrival, anticipatory speech preparation, speech performance, and verbal arithmetic performance periods, followed by one or more recovery periods. The TSST requires participants to prepare and deliver a speech, and verbally respond to a challenging arithmetic problem in the presence of a socially evaluative audience.3 Social evaluation and uncontrollability have been identified as key components of stress induction by the TSST.4 In use for over a decade, the goal of the TSST is to systematically induce a stress response in order to measure differences in reactivity, anxiety and activation of the hypothalamic-pituitary-adrenal (HPA) or sympathetic-adrenal-medullary (SAM) axis during the task.1 Researchers generally assess changes in self-reported anxiety, physiological measures (e.g. heart rate), and/or neuroendocrine indices (e.g. the stress hormone cortisol) in response to the TSST. Many investigators have adopted salivary sampling for stress markers such as cortisol and alpha-amylase (a marker of autonomic nervous system activation) as an alternative to blood sampling to reduce the confounding stress of blood-collection techniques. In addition to changes experienced by an individual completing the TSST, researchers can compare changes between different treatment groups (e.g. clinical versus healthy control samples) or the effectiveness of stress-reducing interventions.1
1. Set Up
2. Pre-stress Measurements
3. The TSST
4. Post-stress Recovery Measurements
5. Data Analysis
6. Optional: Additional Salivary Cortisol Assay Protocol Information (reproduced from Salimetrics salivary cortisol assay kit insert)
7. Representative Results:
The representative data presented here is compiled from a review of the literature and two studies that were conducted in our lab during the afternoon with healthy adult male participants. These data are intended to approximately represent the results that might be found using the protocol presented in this article.
This TSST protocol (Figure 1) induces increases in self-reported anxiety (as measured by the State Trait Anxiety Inventory; Figure 2), heart rate (Figure 3), and salivary cortisol concentrations (Figure 4). The experimental protocol illustrated in Figure 1 is meant to provide one example of how various measurements might be made during a data collection session with the TSST. The timing of measurements and the inclusion of different measures will be dictated by the specific research question. If using an intervention that is intended to reduce anxiety and/or stress response, blunted or attenuated increases in these measures are predicted.
Figure 1. Experimental protocol. Note: Trier Social Stress Test (TSST); State Trait Anxiety Inventory (STAI); 5-minute Pre Stress period (PS); 10-minute Anticipatory Stress period (speech preparation) (AS); 5-minute Speech period (S); 5-minute Math period (M).
Figure 2. Representative state anxiety scores. Note: State Anxiety score calculated from 20-iten state anxiety measure of State Trait Anxiety inventory (STAI). Representative scores reflect data collected in our lab and published in literature.
Figure 3. Representative heart rate data. Note: Heart rate in beats per minute (BPM). Representative values reflect data collected in our lab and published in literature.
Figure 4. Representative salivary cortisol data. Note: Cortisol concentration in uL/dL. Representative values reflect data collected in our lab and published in literature.
In this article, we demonstrated how to conduct the Trier Social Stress Test in a healthy volunteer. The TSST is a standardized laboratory social stressor that induces robust and reliable increases in psychological, physiological and neuroendocrine measures. The TSST is a useful alternative to physical stressors such at the cold presser test or treadmill walking, and reproduces the more naturalistic psychological stress of performance in the presence of an evaluative audience.
Many aspects ...
No conflicts of interest declared.
Thank you to Jessica Ottmar for protocol suggestions and contributions to the representative data. Special thanks to Sabrina Blackledge, Lauren Kohoutek and Kerisa Shelton for demonstrating this protocol.
Name | Company | Catalog Number | Comments |
Name of the equipment/Supply | Company | Catalogue number | |
---|---|---|---|
BSL Psychophysiology System, Mac OS Including MP36 Data Acquisition Unit and three lead electrocardiogram electrodes | BioPac Systems Inc. | BSLPSY-M | |
State Trait Anxiety Inventory | Mind Garden, Inc. | STAID-B | |
Salivary Cortisol Enzyme Immuno Assay Kit | Salimetrics | 1-3002 | |
2.0 ml polypropylene vials | Fisher Scientific | 05 40B 146 | |
BioRad Microplate Reader, Model 680, with Microplate Manager software | BioRad | Plate Reader: 168 1000 Software: 1706800 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaPrzeglądaj więcej artyków
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone