Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Transgenic and knockout mouse models of neurological diseases are useful for studying the role of genes in normal and abnormal neurophysiology. This article describes methodologies which can be used to study long-term potentiation, a cellular mechanism which may underlie learning and memory, in transgenic and knockout freely behaving mouse models of neuropathology.
Studies of long-term potentiation of synaptic efficacy, an activity-dependent synaptic phenomenon having properties that make it attractive as a potential cellular mechanism underlying learning and information storage, have long been used to elucidate the physiology of various neuronal circuits in the hippocampus, amygdala, and other limbic and cortical structures. With this in mind, transgenic mouse models of neurological diseases represent useful platforms to conduct long-term potentiation (LTP) studies to develop a greater understanding of the role of genes in normal and abnormal synaptic communication in neuronal networks involved in learning, emotion and information processing. This article describes methodologies for reliably inducing LTP in the freely behaving mouse. These methodologies can be used in studies of transgenic and knockout freely behaving mouse models of neurodegenerative diseases.
The development of technology to manipulate genes has produced transgenic and knockout mouse models of almost every neurodegenerative and neurological diseases. This has necessitated translation of electrophysiological research techniques previously used in larger rodent species to the mouse animal model. One such neurophysiological investigation technique is the use long-term potentiation (LTP) to test the efficacy of synaptic connections within neuronal networks involved in various neuropathological disorders. This protocol describes techniques for reliable electrophysiological investigation of LTP in freely behaving mice. The advantage of this protocol over others is that it is simple and easy to implement; it is also rather less costly as it does not require neither the use of expensive computer-controlled microdrive systems nor field effect transistor headstages; and, to our knowledge, is the first video protocol of chronic electrophysiological recordings to study LTP in freely behaving mice. To this end, we describe in this article simple methodologies for studying long-term potentiation in freely behaving mice. These methodologies can readily be translated to transgenic and knockout mouse models of neuropathological disorders.
This protocol is appropriate for mice of 3 and 18 months of age and approximate body weight of 30-50 g). Mice can be obtained from The Jackson Laboratory (Bar Harbor, ME). All surgical and experimental protocols were approved by the Trinity College Animal Care and Use Committee and were in accordance with the NIH Guide for the Care and Use of Laboratory Animals.
1. Animal Preparation and Surgical Procedures
2. LTP Induction
Table 1 shows the coordinates for DG and mPP as used in this protocol. Figure 1A shows the markings for the target structures on the skull; also shown are the location of the ground and reference electrodes. Figure 1B illustrates representative evoked response traces both pre- and posttetanization in the same animal. Note that the posttetanization evoked response is larger than the pretetanization response which is indicative of LTP induction2.
In this protocol, we have demonstrated a reliable and simple method for studying LTP in DG in freely behaving mice. While many studies of LTP in awake rats have been performed3,4, very few have been conducted in awake mice primarily due to the technical complexity posed by the limited cranial real estate in mice and the weight of electrode headstages relative to the average weight of mice5. The few studies that have demonstrated LTP in DG in freely behaving mice utilized either microdrive electrode ...
Authors have nothing to disclose.
The authors wish to acknowledge the following: Dr. Joseph Bronzino, Dr. Khamis Abu-Hassaballah, Mr. R.J. Austin-LaFrance, and Ms. Jessica Koranda.
Name | Company | Catalog Number | Comments |
Ketamine (100 mg/ml) | Henry Schein | 10177 | |
Xylazine (20 mg/ml) | Henry Schein | 33197 | |
Acepromazine (10 mg/ml) | Henry Schein | 2177 | |
Dental acrylic powder | Lang Dental Manufacturing Co. | 1330CLR | |
Dental acrylic liquid | Lang Dental Manufacturing Co. | 1306CLR | |
Tungsten wire (0.127 mm) | World Precision Instruments | TGW0515 | |
Stainless Steel Hypodermic Tubing (0.286 mm) | World Precision Instruments | 832400 | |
Flunixin (50 mg/ml) | Henry Schein | 14165 | |
Epoxilyte | Superior Essex | EP 6001-M | |
Stainless steel wire insert (0.2 mm) | World Precision Instruments | 792900 | |
Stereotaxic frame apparatus | Kopf Instruments | Model 902 | |
Ear cuffs (ear cups) | Kopf Instruments | Model 921 | |
Electrophysiological stimulator | Astro-Med, Inc. | S88 | |
Digital oscilloscope | B K Precision Corp. | 2542 | |
Current isolation unit | Astro-Med, Inc. | PSIU-6 | |
Differential amplifier | World Precision Instruments, Inc. | DAM-50 | |
Commutator | Plastics One | SLC6 | |
Dental drill | Stoelting | 58650 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone