JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

We adapted a set of protocols for the measurement of reactive oxygen species (ROS) that can be applied in various amoeba and mammalian cellular models for qualitative and quantitative studies.

Streszczenie

Reactive oxygen species (ROS) comprise a range of reactive and short-lived, oxygen-containing molecules, which are dynamically interconverted or eliminated either catalytically or spontaneously. Due to the short life spans of most ROS and the diversity of their sources and subcellular localizations, a complete picture can be obtained only by careful measurements using a combination of protocols. Here, we present a set of three different protocols using OxyBurst Green (OBG)-coated beads, or dihydroethidium (DHE) and Amplex UltraRed (AUR), to monitor qualitatively and quantitatively various ROS in professional phagocytes such as Dictyostelium. We optimised the beads coating procedures and used OBG-coated beads and live microscopy to dynamically visualize intraphagosomal ROS generation at the single cell level. We identified lipopolysaccharide (LPS) from E. coli as a potent stimulator for ROS generation in Dictyostelium. In addition, we developed real time, medium-throughput assays using DHE and AUR to quantitatively measure intracellular superoxide and extracellular H2O2 production, respectively.

Wprowadzenie

Reactive oxygen species (ROS) are involved in a wide variety of biological processes such as host defense, signaling, tissue development and response to injury as well as hypertension and cancer. The well-studied phagosomal NADPH oxidase machinery is dedicated to rapid ROS generation, known as the oxidative burst, to kill bacteria ingested in neutrophils' phagosomes1. In addition, leakage of electrons as a byproduct of the mitochondrial respiratory chain was previously thought to be responsible only for an unregulated source of ROS. But recently, it was identified as an important mechanism to contribute to intraphagosomal killing of bacteria in mouse macrophages2. In recent years, the social amoeba, Dictyostelium, has become a powerful and popular model to study cell intrinsic mechanisms of the innate immune response. Indeed, Dictyostelium and human phagocytes share a surprisingly high level of conservation in molecular machineries responsible for bacteria sensing, engulfment and killing3,4. The homologs of proteins and enzymes related to ROS production or detoxification, such as NADPH oxidases, catalases, superoxide dismutases, can be found in both human and Dictyostelium. As the best studied amoeba, Dictyostelium presents several unique advantages over mammalian model system. They grow at room temperature without the need for CO2, with a doubling time of 8-10 hr. They can be easily kept as adherent or suspension cultures. In addition, thanks to their fully sequenced and annotated haploid genome, and to easy genetic manipulation, Dictyostelium has become a very attractive experimental model organism.

In previous studies, various chlorinated and fluorinated derivatives of fluorescein (collectively known as OxyBurst Green, OBG) that emit fluorescence after oxidation by ROS, have been used as a ROS reporter. Cell-permeant esterified derivatives are used to measure cytoplasmic ROS, whereas cell-impermeant dextran- or protein-coupled derivatives are used to measure extracellular ROS. In particular, OBG BSA-coated beads have already been used to detect phagosomal ROS production in mammalian cells5. However, the microplate reader-based approach can only give an averaged ROS generation curve from a population of cells. With the present protocol, by using Dictyostelium , a professional phagocyte, and optimized experimental conditions, we obtain stable and efficient phagocytosis without conjugating any opsonin onto the beads. DHE has been used in various model systems, such as mammalian neutrophils and macrophages, to detect ROS production6-9. Meanwhile, there are some controversies over the specificity and sensitivity of the method8,10. As an improved version of Amplex Red, the fluorescence intensity of AUR is less sensitive to pH, which makes it more suitable to measure ROS in nonneutral or weakly acidic milieus. AUR has been recently applied in several mammalian systems11,12, but its use in nonmammalian models, which quite often require weakly acidic growth media, has not been reported yet. In addition, there is no published protocol to quantitatively and dynamically measure ROS production and localization in the social amoeba Dictyostelium.

The goal of the presented set of protocols is to provide an easy and versatile solution to monitor various ROS and their localization, and further give insights into ROS-related cellular mechanisms. For the OBG assay, we used live microscopy to monitor the whole process of phagosomal ROS generation after uptake of OBG-coated beads by Dictyostelium cells, and provided a new approach to study the mechanism of intraphagosomal killing of bacteria. We have optimized medium-throughput DHE and AUR assays in Dictyostelium, to measure intracellular superoxide and extracellular H2O2 production, respectively, by using LPS as a potent ROS stimulator. Note that LPS was recently shown to increase the bactericidal activity of Dictyostelium towards phagocytosed bacteria13. In addition, treatment with DEDTC and catalase explicitly confirmed that these two methods specifically measure different types and subcellular localizations of ROS in Dictyostelium. Finally, the OBG assay can be adapted to any adherent phagocytic cell, by further opsonizing the beads with ligands for phagocytic receptors of animal cells. In principle, the DHE and AUR assays can also be fine-tuned for measurements in any adherent or nonadherent cell under appropriate experimental conditions.

Protokół

1. Visualization and Qualitative Measurement of ROS Production in Phagosomes

The OBG-coated beads should be prepared in advance. The beads coating procedures and agar overlay technique are adapted from published references5,14.

  1. Add 1 ml suspension of 3.0 μm carboxylated silica beads (about 1.8 x 109 beads) into an 1.5 ml tube, wash the beads 3x with 1 ml of PBS by quick spin and vortexing.
  2. Resuspend the beads in 1 ml of PBS containing 25 mg/ml cyanamide (to activate the carboxylated silica beads to covalently bind prelabeled BSA), incubate on a wheel for 15 min.
  3. Wash 3x with 1 ml of coupling buffer (0.1 M sodium borate, pH 8.0) by quick spin (centrifuge at full speed in a table top mini centrifuge for 5 sec or alternatively centrifuge at 2,000 x g for 1 min in a table top centrifuge) and vortexing to remove excess cyanamide.
  4. Mix the washed beads with 500 μl of coupling buffer containing 1 mg of OxyBurst Green (OBG) H2HFF (dihydro-2',4,5,6,7,7'-hexafluorofluorescein)-BSA, fill the tube with nitrogen gas from a standard gas-can before capping, and incubate on a wheel for 14 hr (overnight) at RT in the dark.
  5. Wash the beads 2x with 1 ml of quenching buffer (250 mM glycin in PBS) to remove unreacted OBG, and twice with coupling buffer to remove the quenching buffer by quick spin and vortexing.
  6. Add 1 ml of coupling buffer containing 50 μg of Alexa fluor 594 succinimidyl ester to conjugate to BSA. Fill the tube with nitrogen before capping, and incubate on a wheel for 1.5 hr at room temperature in the dark.
  7. Wash the beads 3x with 1 ml of quenching buffer by quick spin and vortexing to stop the reaction, then wash the beads 3x with 1 ml of PBS by quick spin and vortexing.
  8. Finally, resuspend the beads in 1 ml of PBS with 2 μl of 10% w/v azide for long-term storage. Measure the concentration of beads in the suspension with a hemocytometer (usually around 1-2 x 109 beads/ml), fill the tube with nitrogen before capping, and store at 4 °C in the dark.
  9. The coating efficiency of the OBG fluorescein can be tested by checking the emission spectrum using excitation at 500 nm. When oxidized by H2O2 in the presence of horseradish peroxidase (HRP), the fluorescence intensity of oxidized beads, at emission peak (538 nm), is 11-12x higher than that of nonoxidized coated beads.
  10. Harvest exponentially growing Dictyostelium cells from a 10 cm Petri dish, plate different densities of cells on 3 cm dishes with an optically clear plastic or glass bottom, and grow them overnight. Choose the dishes that are about 80% confluent for the experiment. A detailed protocol for cultivating Dictyostelium cells has been published15.
  11. Replace the culture medium with LoFlo medium (LF medium), incubate for 2 hr before the experiment in order to decrease the extracellular and intraendosomal autofluorescence of the HL5C culture medium.
  12. In parallel, melt 10 ml 1.5% bacto agar in LF medium, pour the agar onto a flat surface (i.e. a glass plate of 10 cm x 10 cm) in order to form an agar layer about 1 mm thick, wait for 10-15 min to solidify. Cut the agar layer into 2 cm x 2 cm squares and place in LF medium for later use.
  13. Meanwhile, prepare the spinning-disk or wide field microscope, set the temperature of the environmental chamber at 22 °C and adjust the settings for this experiment. (See additional comments in the discussion).
  14. After 2 hr of incubation, aspirate the LF medium from the 3 cm dish, but the cell monolayer should still be covered by a thin film of medium. Dilute the coated beads to 1.5 x 107 beads/ml, and add 10 μl onto the cell layer.
  15. Take one square agar sheet, drain excess liquid but keep wet. Gently put the agar square on top of the cell layer. Do not move the agar square when it is lying on the cells. The agar overlay is used to increase contact between beads and cells, thereby improving uptake, and it also slightly compresses the cells, keeping them better in the focal plane of the objective.
  16. Place the lid onto the dish, place it on the microscope stage, and automatically take pictures in the red, green and phase channels every 1 min for 2 hr or longer.
  17. Select and focus on cellular events that contain the whole process of phagocytosis. Merge the optimized 3 channels and assemble the pictures into a movie using professional image processing software. Quantify fluorescence intensities of each selected beads in red and green channels, and the ratio of green/red will reflect the dynamic phagosomal ROS production of the cells.

2. Quantitative and Medium-throughput Measurement of Intracellular Superoxide Production

  1. Collect one 80% confluent dish of Dictyostelium in 10 ml of HL5C medium. Centrifuge Dictyostelium cells at 850 x g for 5 min, carefully and completely aspirate excess medium. Resuspend cells in SS6.4 buffer [0.12 M sorbitol in Sorensen buffer (14.69 mM KH2PO4 and 6.27 mM Na2HPO4), pH 6.4], count cells and dilute to a final density of 6 x 106 cells/ml (see additional comments in the discussion).
  2. Add 50 μl of cell suspension into each well of a white nontransparent 96 well plate (see additional comments in the discussion).
  3. Dilute DHE stock (30 mM in DMSO) 500 fold with SS6.4, pipette 50 μl of diluted DHE into each well using a multichannel pipette if necessary. The final concentration of DHE is 30 μM. The reaction starts immediately.
  4. Stimuli or inhibitors can be added at this point, or at other time points according to specific needs.
  5. Use the end point "top reading" mode of a fluorescence microplate reader, with fluorescence excitation/emission at 522 nm/605 nm, read every 2 min for 1 hr, medium shake 5 sec/min, at 22 °C.

3. Quantitative and High Throughput Measurement of Extracellular H2O2 Production

  1. Follow the same steps as described in 2.1 and 2.2.
  2. Prepare diluted HRP by adding 5 μl of HRP stock (100 U/ml in distilled water) into 10 ml of SS6.4, vortex or invert the tube to mix well and keep on ice for later use. The diluted HRP solution is at 0.05 U/ml.
  3. Prepare the AUR reaction mixture by mixing the AUR stock (10 mM AUR in DMSO) and the diluted HRP solution into SS6.4 buffer to the final concentrations of 6.25 μM, and 0.005 U/ml, respectively. As an example, to prepare the reaction mixture for 40 reactions, mix 1600 μl of SS6.4 with 400 μl of diluted HRP and 2.5 μl of AUR stock solution.
  4. Add 50 μl of AUR mixture into each well using a multichannel pipette if necessary. Now the reaction starts.
  5. Stimuli or inhibitors can be added at this point, or at other time points according to specific needs.
  6. Use the end point "top reading" mode of a fluorescence micro plate reader, with fluorescence excitation/emission at 530 nm/590 nm, read every 2 min for 1 hr, medium shake 5 sec/min, at 22 °C.

Wyniki

The generation of ROS in phagosomes can be visualized qualitatively and dynamically by microscopy (File S1). The red fluorescence emitted by Alexa fluor 594 is pH-insensitive and remains constant in the phagosomal environment, while oxidation of OBG increases its fluorescence in the green channel. The emission spectra of in vitro oxidized and nonoxidized OBG-coated beads are compared in Figure 1B, showing a significant increase in intensity after oxidation. To facilitate visuali...

Dyskusje

Compared to the previously described methods, the OBG assay dynamically visualizes the process of phagosomal ROS generation at the single cell level, instead of measuring an average ROS signal from a population of cells. Such population-averaging methods tend to obscure critical information caused by nonsynchronous phagocytosis. We successfully adapted DHE and AUR assays to Dictyostelium and optimized the protocols. Most importantly, we specified the types and subcellular localizations of ROS measured by these t...

Ujawnienia

No conflicts of interest declared.

Podziękowania

We are grateful to Drs Karl-Heinz Krause and Vincent Jaquet for help and advice to set up these protocols, and also thank Christoph Bauer and Jérôme Bosset from the Bioimaging Platform of the NCCR and Dr. Navin Gopaldass for their technical support. The research is supported by a ProDoc grant of the Swiss National Science Foundation.

Materiały

NameCompanyCatalog NumberComments
REAGENTS
OxyBURST Green H2HFF BSAInvitrogenO-13291
Alexa Fluor 594InvitrogenA-20004
Carboxylated silica beadsKisker BiotechPSi-3.0COOH
HL5C mediumForMediumHLC0102
LoFlo mediumForMediumLF1001
Bacto agarBD204010
DihydroethidiumSigma37291-25MG
Amplex UltraRedInvitrogenA36006
Horseradish peroxidaseRoche10108090001
Diethyldithiocarbamate (DEDTC)SigmaD3506-100G
CatalaseSigmaC9322-1G
CyanamideSigma187364-25G
LipopolysaccharidesSigmaL2630-25G
EQUIPMENT
ibidi μ-Dish 35 mm, highibidi81156Bottom made of optically clear plastic
MatTek dish 35 mmMatTek corporationP35G-1.5-14-CBottom made of a glass coverslip
Scepter Cell CounterMerck MilliporePHCC00000
White 96 well plateNunc236108
CentrifugeSORVALLLegend RT
Microplate readerBioTekSynergy Mx

Odniesienia

  1. Bedard, K., Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313 (2007).
  2. West, A. P., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 472, 476-480 (2011).
  3. Fey, P., Gaudet, P., Pilcher, K. E., Franke, J., Chisholm, R. L. dictyBase and the Dicty Stock Center. Methods Mol. Biol. 346, 51-74 (2006).
  4. Basu, S., et al. dictyBase 2013: integrating multiple Dictyostelid species. Nucleic Acids Res. 41, 676-683 (2013).
  5. VanderVen, B. C., Yates, R. M., Russell, D. G. Intraphagosomal measurement of the magnitude and duration of the oxidative burst. Traffic. 10, 372-378 (2009).
  6. Cohn, C. A., Simon, S. R., Schoonen, M. A. Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals. Part. Fibre Toxicol. 5, 2 (2008).
  7. Snyrychova, I., Ayaydin, F., Hideg, E. Detecting hydrogen peroxide in leaves in vivo - a comparison of methods. Physiol. Plant. 135, 1-18 (2009).
  8. Rodrigues, J. V., Gomes, C. M. Enhanced superoxide and hydrogen peroxide detection in biological assays. Free Radic. Biol. Med. 49, 61-66 (2010).
  9. Chen, J., Rogers, S. C., Kavdia, M. Analysis of Kinetics of Dihydroethidium Fluorescence with Superoxide Using Xanthine Oxidase and Hypoxanthine Assay. Ann. Biomed. Eng. , (2012).
  10. Lee, C. W., Chen, Y. C., Ostafin, A. The accuracy of Amplex Red assay for hydrogen peroxide in the presence of nanoparticles. J. Biomed. Nanotechnol. 5, 477-485 (2009).
  11. Guimaraes-Ferreira, L., et al. Short-term creatine supplementation decreases reactive oxygen species content with no changes in expression and activity of antioxidant enzymes in skeletal muscle. Eur. J. Appl. Physiol. 112, 3905-3911 (2012).
  12. Peng, D., et al. Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells. Gut. 61, 1250-1260 (2012).
  13. Walk, A., et al. Lipopolysaccharide enhances bactericidal activity in Dictyostelium discoideum cells. Dev. Comp. Immunol. 35, 850-856 (2011).
  14. Fukui, Y., Yumura, S., Yumura, T. K. Agar-overlay immunofluorescence: high-resolution studies of cytoskeletal components and their changes during chemotaxis. Methods Cell Biol. 28, 347-356 (1987).
  15. Fey, P., Kowal, A. S., Gaudet, P., Pilcher, K. E., Chisholm, R. L. Protocols for growth and development of Dictyostelium discoideum. Nat. Protoc. 2, 1307-1316 (2007).
  16. Bloomfield, G., Pears, C. Superoxide signalling required for multicellular development of Dictyostelium. J. Cell. Sci. 116, 3387-3397 (2003).
  17. Dieckmann, R., Gopaldass, N., Escalera, C., Soldati, T., Deretic, V. Autophagosomes and Phagosomes. Methods in Molecular Biology. 445, 317-328 (2008).
  18. Amir, Y., Edward, O. -. A., Utpal, B. A protocol for in vivo detection of reactive oxygen species. Proto. Exch. , (2008).
  19. Neuhaus, E. M., Soldati, T. A myosin I is involved in membrane recycling from early endosomes. J. Cell Biol. 150, 1013-1026 (2000).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Keywords Reactive Oxygen SpeciesROSOxyBurst GreenDihydroethidiumDHEAmplex UltraRedAURDictyosteliumPhagocytesLipopolysaccharideLPSSuperoxideHydrogen PeroxideFluorescence MicroscopyQuantitation

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone