Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This manuscript describes a protocol for isolating exosomes from human urine using a modified precipitation technique.
Identification of biomarkers that allow early detection of kidney diseases in urine and plasma has been an area of active interest for several years. Urinary exosome vesicles, 40-100 nm in size, are released into the urine under normal conditions by cells from all nephron segments and may contain protein, mRNA and microRNA representative of their cell type of origin. Under conditions of renal dysfunction or injury, exosomes may contain altered proportions of these components, which may serve as biomarkers for disease. There are currently several methods available for isolation of urinary exosomes, and we have previously conducted an experimental comparison of each of these approaches, including three based on ultracentrifugation, one using a nanomembrane ultrafiltration concentrator, one using a commercial precipitation reagent and one using a modification of the precipitation technique using ExoQuick reagent that we developed in our laboratory. We found the modified precipitation method produced the highest yield of exosome particles, miRNA, and mRNA, making this approach suitable for the isolation of exosomes for subsequent RNA profiling. We conclude that the modified exosome precipitation method offers a quick, scalable, and effective alternative for the isolation of exosomes from urine. In this report, we describe our modified precipitation technique using ExoQuick reagent for isolating exosomes from human urine.
Urinary exosomes are small internal vesicles of 100 nm of multivesicular bodies (MVB) derived from all cell types under normal and pathological conditions in urinary space including glomerular podocytes, renal tubule cells and cells lining the urinary drainage systems that appear to be enriched for miRNAs1-2. Many researchers have detected distinct proteins in exosomes isolated from urine of healthy individuals as well as those with renal and/or systematic diseases3-5. Exosomes can be isolated using different methods such as two-step differential ultracentrifugation with or without sucrose6-7, combining nanomembrane filter with ultracentrifugation8-9, or precipitation10-11. We have recently developed a simple, fast, scalable and effective method to isolate urinary exosomes and detect miRNA and protein biomarkers11. Although biomarkers can be detected in a variety of different biological fluids, urine is the most convenient choice for patients with diseases of the kidney and urinary tract because it can be obtained in large amounts in a relatively non-invasive manner.
Although there are several methods to isolate urinary exosomes6-11, the most commonly used procedure depends on differential ultracentrifugation with a 30% sucrose cushion. While this method is efficient and the quality of the resulting exosomes isolated with this procedure is high, the technique itself requires skilled personnel and is time-consuming, requiring several ultracentrifugation steps. Other methods, such as filtration and precipitation, have been developed for the isolation of exosomes, including one that uses a proprietary precipitation reagent (i.e., ExoQuick-TC: System Biosciences; Mountain View, CA). Although precipitation using this reagent is fast and relatively easy, the purity of the exosomes isolated is low compared to the ultracentrifugation method. We recently compared six methods for the isolation of urinary exosomes, including a modification of the precipitation method using ExoQuick-TC that we developed in our laboratory11. We found that this modified precipitation method yielded higher quantities of protein, miRNA, and mRNAs and the procedure itself was faster and easier to implement than ultracentrifugation. Here, we describe the experimental protocol of our modified precipitation method in a stepwise fashion, and include a discussion of the advantages and disadvantages of this technique compared with other methods of exosome isolation. The modified precipitation method involves an initial precipitation of exosome particles, followed by removal of Tamm-Horsfall protein, which is correlated with exosomal proteins, and known to reduce exosome yield from urine. We found that these modifications increased the yield and purity of the exosomal preparation from urine.
NOTE: The steps involved in the isolation of the urinary exosomes using the modified precipitation method are illustrated in the Figure 1. The initial steps involve removal of large dead cells and cell debris by centrifugation. The final pellet obtained from the supernatant collected from each subsequent step corresponds to the exosome, which is dissolved in isolation solution for further extraction of protein, RNA, and DNA.
1. Collection of Urine
2. Removal of Cell Debris and Tamm-Horsfall Protein (THP)
3. Isolation of Exosome Pellet
4. Biomarker Detection and Analysis of Exosome Pellet
Urinary exosomes carry protein, miRNA and mRNA biomarkers secreted from renal epithelial cells. The isolation and detection of these exosomes may provide a useful diagnostic tool for early detection of kidney diseases such as diabetic nephropathy. There are several methods for isolation of exosomes from urine samples collected from human subjects. We previously compared six methods of urine exosome isolation and investigated resulting protein, mRNA, and miRNA levels11. Our aim here was to describe in detail th...
Most methods involving precipitation of exosomes from urine do not address removal of the polymeric network formed by Tamm-Horsfall protein (THP). This protein is present in large amounts in urine, where it putatively traps exosomes during initial low speed centrifugation. In our modified method we reduced THP using DTT prior to exosome precipitation. As shown in Figure 2, a higher amount of THP was observed in the unprocessed urine and pellet, with no THP in the final supernatant and exosome pellet, ind...
Publication fees for this article were paid by SBI Biosciences.
We are grateful to the Roney Family Foundation for the support of this study. We acknowledge the contribution of Dr. M. Lucrecia Alvarez to the planning and execution of the experiments described in this work.
Name | Company | Catalog Number | Comments |
Corning 15 ml Centrifuge Tube | Corning (Sigma Aldrich) | CLS430791 | |
Protease Inhibitor Cocktail | Sigma Aldrich | P8340 | |
Centrifuge | Sorvall | ||
DL-dithiothreitol | Sigma Aldrich | D9779 | used at final concentration of 200 mg/ml |
Novex NuPAGE SDS-PAGE system (4-12% Bis-Tris Gel 1.0 mm, 10 well | Invitrogen | NP0321BOX | For SDS-PAGE analysis |
ECL Advance Western blotting detection kit | GE Healthcare Life Sciences | RPN2135 | For western blot detection of biomarkers |
Exoquick-TC Reagent | System Biosciences (SBI) | EXOTC50A-1 | For exosome isolation |
Exosome CD9 ELISA Complete Kit | System Biosciences (SBI) | EXOEL-CD9-A-1 | For exosome quantification |
AllPrep DNA/RNA/Protein mini kit | Qiagen | 80004 | For DNA, RNA, Protein isolation |
Rneasy MinElute Cleanup kit | Qiagen | 74204 | |
NanoDrop 2000 UV-Vis Spectrophotometer | Thermo Scientific | For Protein Quantification | |
ProteoSilver Sliver Stain Kit | Sigma Aldrich | PROTSIL1-1KT | For staining SDS-PAGE gels |
Xcell SureLock Mini-Cell Electrophoresis System | Life Technologies | For running the SDS-PAGE gels | |
TaqMan microRNA assays | Life Technologies | For RT-PCR assays | |
qBasePlus v1.5 software | Biogazelle NV | For analysis of RT-PCR assay data | |
Rabbit polyclonal antibody to ALIX | Millipore | For western blot detection of biomarkers | |
Mouse monoclonal antibody to TSG101 | Abcam | For western blot detection of biomarkers |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone