Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Metabolic disorders are among one of the most common diseases in humans. The genetically tractable model organism D. melanogaster can be used to identify novel genes that regulate metabolism. This paper describes a relatively simple method which allows studying the metabolic rate in flies by measuring their CO2 production.
Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate.
The biochemical Kreb's cycle generates ATP through the oxidation of acetate derived from carbohydrates, fats, and proteins producing CO2. In Drosophila, O2 input is directly correlated with CO2 output and reflects the level of metabolism1. Thus, measurement of CO2 output has successfully been used in studies related to aging and metabolism2-5. Here our laboratory has modified previously designed experimental setups, allowing measurement of CO2 production in up to eighteen samples without requiring any specialized equipment. Others and we have previously used this method to show differences in metabolic rates in flies that are deficient in the muscular dystrophy associated protein, Dystroglycan (Dg)6-8.
O2 used for oxidative metabolism is converted into CO2, which is expelled as respiratory waste. The construction of hand-made respirometers is described that allows for the determination of the rate of O2 consumed. Flies are placed in a sealed container with a substance that absorbs expelled CO2, efficiently eliminating it from the gaseous phase. The change in gas volume (decreased pressure) is measured by the displacement of fluid in a glass capillary attached to the closed respirometer.
The main advantage of this technique over others is the cost. Previous studies have measured CO2 production by Drosophila using gas analyzers and technically advanced respirometry systems1,9. Despite the more complex equipment, the sensitivity of the method described here is similar to reported values (Table 1). Additionally, several other groups have used variations of this technique to determine relative metabolic rates in Drosophila4-6. Therefore, this assay can be used to generate reliable, reproducible data relevant to Drosophila metabolism without the purchase of specialized equipment which can be setup in any lab and can be used for educational purposes.
In general, the accepted techniques to determine the metabolism of an organism is to measure the CO2 produced, the O2 consumed, or both3,4,9. Though, it can be assumed that one equivalent of O2 generates one equivalent of CO2, the precise ratio of CO2 generated is dependent on the metabolic substrate utilized10. Thus, to accurately determine the metabolic rate in energy units it is necessary to measure both O2 consumed and CO2 produced. Due to this, the method described here is specifically relevant to comparing differences in CO2 production between animals and not the absolute value. Our technique integrates multiple animal CO2 production over a period of time (1-2 hr) and therefore returns an average of the animals' activity. If there is reason to believe that the experimental animals are less active than the control animals the measurement could reflect different levels of activity and not necessarily metabolism.
1. Preparation of Respirometers
2. Preparation of the Measurement Chamber
3. Placing Flies into Respirometers
4. Performing the Experiment
5. Analysis of Results
R= radius of micropipette tube in centimeters
Δd= distance the liquid has moved up in the micropipette of test samples measured in centimeters
Δc= distance the liquid has moved up in the micropipette of the negative control sample (without flies)
n = number of flies used
h= hours
In order to show that the method is sensitive we measured CO2 production from wild type (Oregon R) male flies at 18, 25, and 29 °C and flies mutant for Dg. Flies were raised at 25 °C and then shifted to the experimental temperature for 5 days prior to measurement. As expected for this ectothermic species, the amount of CO2 produced increased with temperature (Figure 2). We have in the past shown that a sugar free diet reduces the metabolic rate of both wi...
In this protocol, we describe an inexpensive and reliable method for measuring CO2 production in flies. We found that this experiment is easy, quick to conduct and generates reproducible data that is in agreement with other studies1,6,9. The protocol outlined here can be easily modified to fit any laboratory's budget and available materials. The construction of each individual respirometer can be adapted as long as the chamber remains airtight. However...
We have nothing to disclose.
We would like to thank Max-Planck Society for funding our research.
Name | Company | Catalog Number | Comments |
BlauBrand IntraMark 50 µl micropipettes | VWR | 612-1413 | |
Soda Lime | Wako | CDN6847 | |
Eosine | Sigma | 031M4359 | Any dye that can create visible colorization of liquid can be used |
Thin Layer Chromatorgaphy (TLC) Developing Chamber | VWR | 21432-761 | Any transparent glass chamber that can be closed with the lid |
Anesthetizer, Lull-A-Fly Kit | Flinn | FB1438 | |
Power Gel Glue | Pritt | ||
1 ml pipett tips | Any | ||
Foam | Any | ||
Plaesticine Putty | Any | ||
Scalpel | Any | ||
Tweezers | Any |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone