Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Using protein microarrays containing nearly the entire S. cerevisiae proteome is probed for rapid unbiased interrogation of thousands of protein-protein interactions in parallel. This method can be utilized for protein-small molecule, posttranslational modification, and other assays in high-throughput.
High-density functional protein microarrays containing ~4,200 recombinant yeast proteins are examined for kinase protein-protein interactions using an affinity purified yeast kinase fusion protein containing a V5-epitope tag for read-out. Purified kinase is obtained through culture of a yeast strain optimized for high copy protein production harboring a plasmid containing a Kinase-V5 fusion construct under a GAL inducible promoter. The yeast is grown in restrictive media with a neutral carbon source for 6 hr followed by induction with 2% galactose. Next, the culture is harvested and kinase is purified using standard affinity chromatographic techniques to obtain a highly purified protein kinase for use in the assay. The purified kinase is diluted with kinase buffer to an appropriate range for the assay and the protein microarrays are blocked prior to hybridization with the protein microarray. After the hybridization, the arrays are probed with monoclonal V5 antibody to identify proteins bound by the kinase-V5 protein. Finally, the arrays are scanned using a standard microarray scanner, and data is extracted for downstream informatics analysis1,2 to determine a high confidence set of protein interactions for downstream validation in vivo.
The need to perform global analyses of protein biochemistry and binding activity in vivo has resulted in the development of new methods for profiling protein-protein interactions (PPIs) and the post-translational modifications of whole proteomes1,3-8. Protein microarrays are manufactured as functional protein microarrays using full-length functional proteins4-6,8,9, or analytical protein microarrays containing antibodies10,11. They are engineered to contain a high-density of proteins arrayed onto microscope slides with a variety of surface chemistries to facilitate a variety of experimental conditions required for conducting wide-ranging biochemical analyses12. Nitrocellulose and aldehyde surface chemistries for chemical attachment through lysine or affinity attachment methods such as nickel- chelated slides for attaching His-tagged proteins and glutathione for affinity attachment among others13.
The use of functional protein microarrays to detect protein-protein interactions requires access to a high-quality functional protein library14. S. cerevisiae is amenable to producing such a library through the pairing of high-copy affinity tagged protein constructs with high-throughput chromatographic purification techniques. The vast majority of the yeast genome has been sequenced and nearly the entire proteome can be expressed from a high-copy plasmid for purification and biochemical analyses12. Once the proteins are obtained and arrayed in 384-well format, they are printed onto a microscope slide allowing for rapid parallel multi-parametric biochemical analysis and bioinformatic interrogation8,14-16. Protein microarrays have been used for enzymatic assays and interactions with proteins, lipids, small molecules, and nucleic acids among many other applications. The accessibility of proteins on the surface of proteome arrays make them amenable to different types of analytical detection including, immune-affinity, Surface Plasmon Resonance, fluorescence and many other techniques. Moreover, it allows for fine control of the experimental condition where it might be hard to do in vivo.
The aim of this protocol is to demonstrate the appropriate use of functional protein microarrays to detect protein-protein interactions. This application enables the high-throughput parallel biochemical analysis of protein binding activities using a highly purified analyte (protein) of interest. A C-terminal(carboxy-terminal) tagged V5-fusion bait protein of interest is produced from a high-copy plasmid in a yeast strain optimized for protein purification. C-terminal tagging ensures that the full-length protein has been translated. The protein used in this study is Tda1-V5 fusion protein kinase, which is purified using nickel affinity resin via a His6X tag. The Tda1-V5 fusion construct is purified through serial elution using an imidazole gradient to elute the most highly enriched fraction for use in the assay.
1. Probe Preparation
2. Probing the Arrays
NOTE: Please see step 2.6 of this section to prepare the antibody solution before beginning the assay.
The protein-protein interaction activity was observed using a standard chip reader to evaluate the Tda1-V5 protein kinase fusion construct as a bait protein against a yeast functional protein microarray containing approximately 4,200 unique S. cerevisiae GST-fusion proteins. Further interrogation with the Genepix software revealed a multitude of binding events of varying intensities. The affinity was gauged from the graded intensity of the signal derived from a monoclonal V5-Fluorophore conjugated antibody bound...
The protocol presented was originally performed using 85 unique yeast protein kinase-V5 fusion proteins to compare binding activity across distinct and related families of yeast protein kinases resulting in the identification of new kinase interaction networks in vivo1. As an emerging proteomic profiling technology, the development of High Throughput (HTP) screening of proteomes using protein microarrays relied on peptide libraries, and eukaryotic and prokaryotic model organisms8,17; later,...
The authors declare that they have no competing financial interests.
This work was supported by a grant from the NIH. The assays shown in Figure 1 was performed by Dr. Joseph Fasolo. We thank Dr. Rui Chen for helpful comments.
Name | Company | Catalog Number | Comments |
Petri Dishes | VWR | NC-10747 | or comparable |
Bacto yeast extract | Difco | 0217-17 | |
Bacto peptone | Difco | 0118-17 | |
Bacto agar | Difco | 0140-01 | |
Dextrose | Sigma | D9434 | |
Raffinose | Sigma | R0514 | |
Galactose | Sigma | G0750 | |
Sc-Ura drop out media | MP Bio | 114410622 | |
Small Culture tubes | VWR/Fisher | ||
Large Erlenmeyer Flask | VWR/Fisher | ||
Centrifuge JA-10 rotor | |||
Centrifuge tubes (500 ml) | |||
Falcon tube (50 ml) | VWR/Fisher | 21008-951 | |
PBS Tablets | Sigma | P4417 | |
FastPrep Tubes (2 ml screw cap tube) | |||
FastPrep Machine | MP Biomedicals | 116004500 | |
Zircon Beads | BioSpec | 11079105 | |
Triton X100 | Sigma | P4417 | |
DTT | Sigma | D9779 | |
MgCl2 | Sigma | M8266 | |
NaCl | Sigma | S3014 | |
Imidazole (pH = 7.4) | Sigma | I5513 | |
PMSF | Sigma | 93482 | |
Complete Inhibitor Cocktail (EDTA Free) | Roche | 11873580001 | |
Phosphatase inhibitor cocktail 1 | sigma | P2850 | |
BSA | Sigma | A2153 | |
Tween-20 | Sigma | P1379 | |
ATP | Sigma | A1852 | |
Shaking Incubator (30 °C) | |||
Nickel Affinity Resin | Life Technologies | R901-01 | |
G25 column | GE life sciences | 27-5325-01 | |
Nutator | VWR/Fisher | ||
SDS-PAGE Gel (NuPage) | Life Technologies | ||
Coomassie Blue Stain | Life Technologies | ||
Monoclonal V5 Antibody | Life Technologies | R960-25 | |
Alexa647 Tagged monoclonal V5 Antibody | Life Technologies | 451098 | |
Protein Microarrays Kit | Life Technologies | PAH0525013 | |
Genepix Scanner | Molecular Devices | ||
Lifter Slips | Thomas Scientific | http://www.thomassci.com/Supplies/Microscope-Cover-Glass/_/LIFTER-SLIPS/ | |
Lysis Buffer: 0.1% Triton X-100, 0.5 mM DTT, 2 mM MgCl2, 500 mM NaCl, 50 mM imidazole (pH 7.4), Complete protease inhibitor cocktail – EDTA-free, Phosphatase inhibitor Cocktail 1, 1 mM PMSF (add just prior to use) | Add the reagents to 1x PBS (0.01 M phosphate buffer, 0.0027 M potassium chloride, 0.137 M sodium chloride; pH 7.4) to obtain the desired volume of lysis solution | ||
Blocking Buffer: 1% bovine serum albumin (BSA), 0.1% Tween-20 | Add the reagents to 1x PBS to obtain the desired volume of blocking buffer | ||
Probe Buffer: 2 mM MgCl2, 0.5 mM DTT, 0.05% Triton X-100, 50 mM NaCl, 500 μM ATP (for kinases), 1% BSA | Add the reagent to 1x PBS to obtain desired volume of probe buffer | ||
Wash Buffer: 0.1% Triton X-100, 500 mM NaCl, 0.5 mM DTT, 50 mM imidazole (pH 7.4),2 mM MgCl2 | Add the reagent to 1x PBS to obtain desired volume of probe buffer | ||
Elution Buffer: 0.1% Triton X-100, 0.5 mM DTT, 2 mM MgCl2, 500 mM NaCl, 50 – 500 mM imidazole (pH 7.4), Complete protease inhibitor cocktail – EDTA-free, Phosphatase inhibitor Cocktail 1, 1 mM PMSF (add just prior to use) | Before you begin, it is important to note the concentration gradient of imidazole (50 – 500 mM) and to create separate tubes for each concentration (it is advisable to create the interval using 50 mM increments). Add the reagent to 1x PBS to obtain desired volume of probe buffer | ||
3x YEP +6% galactose: Dissolve 30 g of yeast extract and 60 g of peptone in 700 ml of H2O, and autoclave. Add 300 ml of filter sterilized 20% galactose (wt/vol) | Galactose should not be autoclaved |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone