Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
A technique to isolate human hepatocytes and non-parenchymal liver cells from the same donor is described. The different liver cell types build the basis for functional liver models and tissue engineering. This new method aims to isolate liver cells in a high yield and viability.
Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique.
Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation.
Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.
Human liver tissue is highly complex and consists of two different cell entities, parenchymal cells and non-parenchymal cells (NPC). Parenchymal liver cells include hepatocytes and cholangiocytes. Hepatocytes represent 60 to 70% of total liver cells and account for most of the metabolic liver functions, e.g., bile acid and complement factor synthesis, biotransformation and energy metabolism2,3.
The smaller NPC fraction constitutes 30-40% of total liver cells. NPC include different cell populations, namely Kupffer cells (KC), liver endothelial cells (LEC) and the hepatic stellate cells (HSC). This heterogenic cell fraction plays a central role in physiological processes of the liver. Additionally, NPC participate in mediating acute liver damage, e.g., drug-induced liver injury (DILI) as well as in chronic liver injuries, such as cirrhosis4.
In recent years, human liver cells have become more and more essential in research and development of drug testing, drug development and identification of new biochemical pathways in liver diseases. For in vitro testing PHH monocultures are still considered as the "gold standard"5. The main limitation of current homotypic liver models is dedifferentiation and loss of function of the hepatocytes within a few days4. The establishment of 3-dimensional (3D) culture techniques has shown that these limitations can be compensated4,6. However, even modern 3D culture techniques are not able to display all hepatotoxic modes of actions7. Missing NPC populations in the existing in vitro models are discussed as a possible reason for this discrepancy to the in vivo situation. It has been shown that the cell-cell communication between the different liver cell populations plays a central role in physiological homeostasis but also in pathophysiologic processes8. Therefore the scientific attention focuses more and more on NPC and their cell-cell interactions. Their purposeful use in co-culture and tissue engineered systems could be a solution for the high demand of in vitro liver models8,9 which are as close to the in vivo situation as possible.
Currently the main challenge is the development of a standardized human liver co-culture model, which contains clearly defined portions of PHH and NPC. In consequence, isolation techniques for the very heterogenic liver cells are needed and those have to be optimized to gain pure cell populations. While standardized protocols for PHH isolation exist10, the standardized isolation of human NPC is still under development. Most published NPC isolation protocols are based on experiments with non-human cells11,12. Only a few publications describe the isolation process of human NPC and most cover only methods for the isolation of a single cell type11-16. The most important cell characteristics that have been harnessed for cell separation are size, density, attachment behavior, and the expression of surface proteins. On the basis of these characteristics we developed a simplified protocol to isolate PHH, KC, LEC and HSC, which was published previously in Experimental Biology and Medicine1. Because of the broad interest in this technique, the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow reproducing the technique more easily. The protocol also includes quality control methods for evaluation of yield and viability as well as for identification and purity evaluation using specific immunostainings.
Note: All cells were isolated from resected non-tumorous human liver tissue, which remained after partial liver resection with primary or secondary liver tumors. Informed consent of the patients was obtained according to the ethical guidelines of the Charité - Universitätsmedizin Berlin.
1. Preparation of Materials and Solutions
2. Preparation of Perfusion Equipment
3. Perfusion and Digestion of the Liver Tissue Sample (1.5 hr)
4. Isolation of Hepatocytes (1 hr)
5. Purification of Hepatocytes (1 hr)
Note: This purification step is recommended, if the viability is lower than 70%.
6. Cultivation of Hepatocytes
7. Isolation of Non-parenchymal Liver cells (1.5-2 hr)
8. Separation of Kupffer Cells (Adherence Separation Step) (1 hr)
9. Separation of Endothelial Cells (1.5 hr)
10. Separation of Stellate Cells (0.5 hr)
Table 1: Perfusion and isolation solution.
Table 2: Culture and isolation media.
The separation into a parenchymal and non-parenchymal fraction, using density gradient centrifugation as a clean-up procedure combined with the use of adherence properties and MACS leads to successful PHH and NPC isolation. PHH and NPC can be isolated in high quality and quantity. Figure 1 shows the representative setup of the equipment for liver perfusion and digestion. 10% FCS was added to the collagenase P containing Perfusion - Solution II to reduce proteolytic activi...
The published protocol describes a technique to isolate pure PHH and NPC, namely KC, HSC and LEC, simultaneously in high quality and purity from the same sample of human liver tissue. The majority of publications dealing with liver cell isolations cover only one of those cell populations18-20 and isolation procedures performed with human tissue are rare (reviewed by Damm et al.)21. Adaption of methods established with animal tissue (e.g., rat liver) to human liver revealed several ...
The authors declare that they have no competing interests.
We would like to thank Jia Li Liu for their support in creation of Figure 1. This study was supported by the German Federal Ministry of Education and Research (BMBF) project Virtual Liver: 0315741.
Name | Company | Catalog Number | Comments |
General Equipment | |||
PIPETBOY | Eppendorf | ||
pipettes | Eppendorf | ||
microscope | Carl Zeiss | ||
microscope | Olympus | ||
CO2-incubator | Binder | ||
Lamin Air | Heraeus | ||
Centrifuge Varifuge 3.0R | Heraeus | ||
Urine Beaker | Sarstedt | 2041101 | |
perfusor syringe 50 ml | B.Braun | 12F0482022 | |
Bottle Top Filter | Nalgene | 1058787 | |
Falcon 50 ml Polypropylene Conical Tube | BD Biosciences | 352070 | |
Falcon 15 ml Polypropylene Conical Tube | BD Biosciences | 352096 | |
Tissue Culture plate | BD Biosciences | 533047 | 24 well |
serological pipettes | BD Biosciences | 357525, 357551, 357543 | 25 ml, 10 ml, 5 ml |
pipette tips | SARSTEDT | 0220/2278014, 0005/2242011, 0817/2222011 | 100 µl, 200 µl, 1,000 µl |
Name | Company | Catalog Number | Comments |
Isolation Equipment | |||
water bath | Lauda | ||
peristaltic pump | Carl Roth | ||
circulation thermostat | Lauda | ||
pH meter | Schott | ||
fine scales | Sartorius | ||
stand | |||
Büchner funnel | Haldenwanger | ||
plastic funnel | |||
silicone tube | |||
cannulae with olive tips | |||
glass dish | |||
forceps | |||
scalpel | Feather | 12068760 | |
Neubauer counting chamber | Optic Labor | ||
cell lifter | Costar | ||
Surgical Drape | Charité Universitätsmedizin Berlin | A2013027 | |
compress | Fuhrmann | 40013331 | |
sterile surgical gloves | Gammex PF | 1203441104 | |
Tissue glue | B. Braun | 1050052 | |
glass bottle | VWR | ||
Collagenase P | Roche | 13349524 | |
Percoll Separating Solution | Biochrom | L6145 | Density 1.124 g/ml |
Hank’s BSS | PAA | H00911-3938 | |
Dulbecco’s PBS | PAA | H15 - 002 | without Mg/Ca |
Ampuwa | Plastipur | 13CKP151 | |
Albumin | Sigma-Aldrich | A7906 | |
NaCl | Merck | 1,064,041,000 | |
KCl | Merck | 49,361,000 | |
Hepes Pufferan | Roth | 133196836 | |
EDTA | Sigma | E-5134 | |
Name | Company | Catalog Number | Comments |
Media Equipment | |||
DMEM | PAA | E15-005 | Low Glucose (1 g/L) (without L-Glutamine) |
HEPES Buffer Solution 1 M | GIBCO | 1135546 | |
L-Glutamine | GIBCO | 25030-024 | 200 mM |
MEM NEAA | GIBCO | 11140-035 | |
penicillin/streptomycin | GIBCO | 15140-122 | |
RPMI 1640 | PAA | E15 - 039 | without L-Glutamine |
Sodium Pyruvate | GIBCO | 1137663 | 100 mM |
Trypan Blue Solution | Sigma-Aldrich | T8154 | 0.4% |
William’s E | GIBCO | 32551-020 | |
with GlutaMAX™ | |||
EGTA | Sigma-Aldrich | 03780-50G | |
Fortecortin | Merck | 49367 | 8 mg/2 ml |
Human-Insulin | Lilly | HI0210 | 100 I.E./ml |
N-Acetyl cysteine | Sigma-Aldrich | A9165-5G | |
Fetal calf serum (FCS) | PAA | A15-101 | |
Name | Company | Catalog Number | Comments |
Equipment for Immunostainings | |||
CD 68 | R&D Systems, USA | monoclonal | |
CK 19 | Santa Cruz | D2309 | polyclonal |
CK18 | Santa Cruz | K2105 | monoclonal |
Vimentin | Santa Cruz | monoclonal | |
GFAP | Sigma Aldrich | monoclonal | |
Triton X-100 | Sigma Aldrich | 23.472-9 | |
Goat anti-Mouse IgG1-PE | Santa Cruz | C0712 | |
Goat anti-rabbit IgG-FITC | Santa Cruz | L0412 | |
Methanol | J.T.Baker | 1104509006 | |
Formaldehyde 4% | Herbeta Arzneimittel | 200-001-8 | |
Bovine serum albumin (BSA) | Sigma Aldrich | A7906-100G |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone