Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe how to deliver proteins and cell-impermeable small molecules into cultured mammalian cells by a simple co-incubation protocol with a reagent that causes endocytic organelles to become leaky.
Macromolecular delivery strategies typically utilize the endocytic pathway as a route of cellular entry. However, endosomal entrapment severely limits the efficiency with which macromolecules penetrate the cytosolic space of cells. Recently, we have circumvented this problem by identifying the reagent dfTAT, a disulfide bond dimer of the peptide TAT labeled with the fluorophore tetramethylrhodamine. We have generated a fluorescently labeled dimer of the prototypical cell-penetrating peptide (CPP) TAT, dfTAT, which penetrates live cells and reaches the cytosolic space of cells with a particularly high efficiency. Cytosolic delivery of dfTAT is achieved in multiple cell lines, including primary cells. Moreover, delivery does not noticeably impact cell viability, proliferation or gene expression. dfTAT can deliver small molecules, peptides, antibodies, biologically active enzymes and a transcription factor. In this report, we describe the protocols involved in dfTAT synthesis and cellular delivery. The manuscript describes how to control the amount of protein delivered to the cytosolic space of cells by varying the amount of protein administered extracellularly. Finally, the current limitations of this new technology and steps involved in validating delivery are discussed. The described protocols should be extremely useful for cell-based assays as well as for the ex vivo manipulation and reprogramming of cells.
The delivery of proteins, peptides or cell-impermeable small molecules into live cells is often desirable in many biological or biotechnological applications (cellular imaging, functional assays, cellular reprogramming, etc.)1-4. Many delivery approaches have already been reported, including microinjection, electroporation, or use of carrier agents (e.g., cell-penetrating peptides such as TAT, lipids)5-7. Each technique typically has specific pros and cons that might make these approaches adequate for certain applications but not for others. Common issues involve poor delivery efficiencies and/or lack of control of how much material is delivered8,9, toxicity or deleterious physiological impact10,11, lack of temporal control, delivery in few cells but not in a whole population (e.g., microinjection)12, and complex chemical conjugation or formulation schemes11.
Recently, we have developed a novel delivery strategy that circumvents these limitations. This strategy relies on a peptide named dfTAT (dimer fluorescent TAT)13. dfTAT is derived from the well-know cell–penetrating peptide (CPP) TAT. dfTAT contains two disulfide bonded copies of TAT labeled with the fluorophore tetramethylrhodamine. Despite their similarities, TAT and dfTAT differ significantly in activity. TAT is typically internalized into cells by endocytosis. This CPP remains however mostly trapped inside endosomes (this usually lead to a punctate distribution of the peptide inside cells when examined by fluorescence microscopy). Like TAT, dfTAT is efficiently endocytosed by cells. However, dfTAT does not stay trapped inside endosomes. Instead, it mediates endosomal leakage in a manner that is extremely efficient. The endosomolytic activity of dfTAT can then be exploited to deliver macromolecules by a simple incubation assay.
The current understanding of the delivery process is as follows. dfTAT induces macropinocytosis. As a result, cells incubated with dfTAT take up soluble proteins, peptides, or small molecules (molecules of interest, MOI) present in media by fluid-phase endocytosis (see Figure 1). Interactions between dfTAT and MOI are not necessary as long as both entities traffic together within the endocytic pathway. As dfTAT reaches a certain threshold within the lumen of endocytic organelles, it expresses its endosomal leakage activity (the molecular details remain to be fully characterized). The content of the lumen of leaky organelles, and therefore the MOI, is then released into the cells. This approach is therefore very convenient as no conjugation or formulation schemes with MOI are required. Moreover, because dfTAT is not directly modifying a MOI, it should also not interfere with MOIs function once intracellular delivery is achieved. In addition, the concentration of dfTAT used delivery is independent of that of MOI in media. For instance, dfTAT concentration can be kept constant between different experiments to guarantee reproducible efficiencies in endosomal leakage. In contrast, concentration of MOI in media can be gradually changed to achieve desired levels of MOI delivered in cytosol.
The high endosomal leakage efficiency achieved with dfTAT is remarkably innocuous to many of the cells tested to date. This is a surprise because endocytic organelles are important component of the cells and one would expect that the dramatic leakage mediated by dfTAT would be accompanied by deleterious cellular responses. Yet, treated cells proliferate at the same rate as untreated cells and do not display any significant changes in their transcriptome. Moreover, delivery can be repeated within minutes with reproducible delivery efficiencies, indicating that cells can either tolerate or recover from the delivery process without losing their capacity for endocytosis or endosomal leakage. Subtle cellular responses might take place during dfTAT delivery and the molecular details of what these responses might be remain to be explored. Yet, by combining high efficiency, convenience of protocols, and lack of toxicity, this delivery approach should prove immediately useful in many cell-based applications. The protocols presented herein are aimed at making this technology accessible to the research community.
1. SPPS: CK(TMR)TATG (fTAT) Synthesis
Note: dfTAT is produced in two steps: synthesis of the monomer fTAT by solid phase peptide synthesis followed by disulfide bond dimerization to form dfTAT.
2. Oxidation Reaction: dfTAT Generation
3. Measuring dfTAT Concentration
4. Cellular Delivery Experiments
5. Controling Concentration of MOI Delivered
To assess the difference between fTAT and dfTAT, HeLa cells are incubated for 1 hr with each peptide to determine the difference in their cellular localization. The internalization of the two CPP’s was assessed using fluorescence microscopy. Figure 2 shows that fTAT (20 µM) localizes in a punctate distribution. This distribution is consistent with the peptide remaining entrapped inside endosomes. In contrast, the fluorescence signal of dfTAT (5 µM) displays a homogenous distribution throu...
The cells used for dfTAT delivery should not be overly confluent (>90% confluency) since this might affect the delivery efficiency. The cells should also be healthy: dead cells in the culture can release apoptotic fragments with which dfTAT can interact (e.g., DNA from degraded nuclei). This in turn can interfere with delivery efficiency and the quality of imaging. Cells should be washed thoroughly to remove FBS before adding dfTAT. BSA present in FBS can bind to dfTAT and this can lower the delivery efficie...
The authors have nothing to disclose.
This article was supported by Award Number R01GM087227 from the National Institute of General Medical Sciences, the Norman Ackerman Advanced Research Program, and the Robert A. Welch foundation (Grant A-1769).
Name | Company | Catalog Number | Comments |
Heparin | Sigma | CAS 9041-08-1 | |
SYTOX Blue | Invitrogen | S11348 | |
SYTOX Green | Invitrogen | S7020 | |
nrL15 L-15 (–) cysteine | Hyclone | Special order | |
Fmoc-protected Amino acids | Novabiochem | ||
dfTAT | Samples will be provided upon request (contact: pellois@tamu.edu) | ||
Biosafety Cabinet | |||
Inverted epifluorescence microscope | Olympus | model IXB1 | equipped with a heating stage maintained at 37 °C and with a Rolera-MGI Plus back-illuminated electron-multiplying charge-coupled device (EMCCD) camera (Qimaging). |
37 °C humidified, 5% CO2 incubator | |||
Peptide synthesizer or vessel to preform manual peptide synthesis |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone