Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe a targeted RNA sequencing-based method that includes preparation of indexed cDNA libraries, hybridization and capture with custom probes and data analysis to interrogate selected transcripts for gene expression, mutations, and gene fusions. Targeted RNAseq permits cost-effective, rapid evaluation of selected transcripts on a desktop sequencer.
RNA sequencing (RNAseq) is a versatile method that can be utilized to detect and characterize gene expression, mutations, gene fusions, and noncoding RNAs. Standard RNAseq requires 30 - 100 million sequencing reads and can include multiple RNA products such as mRNA and noncoding RNAs. We demonstrate how targeted RNAseq (capture) permits a focused study on selected RNA products using a desktop sequencer. RNAseq capture can characterize unannotated, low, or transiently expressed transcripts that may otherwise be missed using traditional RNAseq methods. Here we describe the extraction of RNA from cell lines, ribosomal RNA depletion, cDNA synthesis, preparation of barcoded libraries, hybridization and capture of targeted transcripts and multiplex sequencing on a desktop sequencer. We also outline the computational analysis pipeline, which includes quality control assessment, alignment, fusion detection, gene expression quantification and identification of single nucleotide variants. This assay allows for targeted transcript sequencing to characterize gene expression, gene fusions, and mutations.
Whole transcriptome or RNA sequencing (RNAseq) is an unbiased sequencing method to assess all RNA products. The goal of targeted RNAseq (Capture) is a focused evaluation of selected transcripts with increased sensitivity, dynamic range, reduced cost or scale, and increased throughput compared to standard RNAseq. Similar to standard RNAseq, targeted enrichment approaches can be used to evaluate gene expression, multiple RNA species such as mRNA, microRNA (miRNA), lncRNA1, other noncoding RNAs2, gene fusions3, and mutations4-6.
Capture involves hybridization of complementary oligonucleotides to enrich cDNA libraries for sequencing. The rationale for RNAseq Capture is similar to microarray approaches where complementary oligonucleotides or probes are hybridized to samples and then measured for relative abundance. For microarray technologies, expression is based on relative signal measured for transcripts binding to these probes. Microarrays are thus limited by range, potential background noise from non-specific binding, and cross-hybridization of probes. Furthermore, arrays have limited dynamic range for low and highly expressed transcripts compared to RNAseq1. Microarrays are widely utilized due to their reduced cost and high throughput capacity compared to RNAseq.
Here, we demonstrate a method for RNAseq Capture that offers a middle ground between RNAseq and microarray approaches for evaluating the transcriptome. RNAseq Capture has intermediate throughput, greater dynamic range and sensitivity, and is scaled for fast turnaround on desktop sequencers. RNAseq Capture also requires reduced computational resources in terms of storage space and data processing.
Note: This protocol describes the simultaneous processing and analysis of four samples. This method is compatible with RNA isolated from cells, fresh frozen tissue and formalin-fixed paraffin-embedded tissue (FFPE). This protocol begins with 50 - 1,000 ng (250 ng recommended) of starting RNA input for each sample.
1. rRNA Depletion and Fragmentation of RNA Procedure
2. cDNA Synthesis
3. Library Preparation
4. Library Amplification
5. Hybridization, Capture and Sequencing
6. Data Analysis
A schematic highlighting key steps in RNAseq Capture is shown in Figure 1. Four cancer cell lines with known mutations were used to demonstrate the effectiveness of the RNAseq Capture technique (K562 with ABL1 fusion, LC2 with RET fusion, EOL1 with PDGFRalpha fusion and RT-4 with FGFR3 fusion). The four samples were pooled together and sequenced with 2x 100 bp reads on a desktop sequencer, which generates FASTQ files. FASTQ files were r...
RNAseq Capture is an intermediate strategy between RNAseq and microarray approaches for evaluating a selected part of the transcriptome. The advantages of Capture include reduced cost, rapid turnaround time on a desktop sequencer, high throughput, and detection of genomic alterations. The method can be adapted to characterize non-coding RNAs23, detect single nucleotide variants4-6, examine RNA splicing, and to identify gene fusions or structural rearrangements24. Further, this approach ca...
S.R. receives funding from Novartis and Ariad Pharmaceuticals for conduct of clinical trials. S.R. immediate family members own stock in Johnson and Johnson.
We give special thanks to Ezra Lyon, Eliot Zhu, Michele Wing, Esko Kautto and Eric Samorodnitsky for technical support. We would also like to thank Jenny Badillo for her administrative support for our team. We acknowledge the Ohio Supercomputer Center (OSC) for providing disk space, processing capacity, and support to run our analyses. We thank the Comprehensive Cancer Center (CCC) at The Ohio State University Wexner Medical Center for their administrative support of this work. S.R. and Team are supported by the American Cancer Society (MRSG-12-194-01-TBG), a Prostate Cancer Foundation Young Investigator Award, NHGRI (UM1HG006508-01A1), Fore Cancer Research Foundation, American Lung Association, and Pelotonia.
Name | Company | Catalog Number | Comments |
Thermomixer R | Eppendorf | 21516-166 | |
Centrifuge 5417R | Eppendorf | 5417R | |
miRNeasy Mini Kit | Qiagen | 217004 | |
Molecular Biology Grade Ethanol | Sigma Aldrich | E7023-6X500ML | |
Thermoblock 24 x 1.5 ml | Eppendorf | 21516-166 | |
MiSeq Reagent Kit v2 (300-cycles) | Illumina | MS-102-2002 | |
MiSeq Desktop Sequencer | Illumina | ||
PhiX Control v3 | Illumina | FC-110-3001 | |
TruSeq Stranded Total RNA Kit with RiboZero Gold SetA | Illumina | RS-122-2301 | |
25 rxn xGen® Universal Blocking Oligo - TS-p5 | IDT | 127040822 | |
25 rxn xGen® Universal Blocking Oligo - TS-p7(6nt) | IDT | 127040823 | |
25 rxn xGen® Universal Blocking Oligo - TS-p7(8nt) | IDT | 127040824 | |
Agencourt® AMPure® XP - PCR Purification beads | Beckman-Coulter | A63880 | |
Dynabeads® M-270 Streptavidin | Life Technologies | 65305 | |
COT Human DNA, Fluorometric Grade, 1 mg | Roche Applied Science | 05480647001 | |
Qubit® Assay Tubes | Life Technologies | Q32856 | |
Qubit® dsDNA HS Assay Kit | Life Technologies | Q32851 | |
SeqCap® EZ Hybridization and Wash Kits (24 or 96 reactions) | Roche NimbleGen | 05634261001 or 05634253001 | |
Qubit® 2.0 Fluorometer | Life Technologies | Q32866 | |
10 x 2 ml IDTE pH 8.0 (1x TE Solution) | IDT | ||
Tween20 BioXtra | Sigma | P7949-500ML | |
Nuclease Free Water | Life Technologies | AM9937 | |
C1000 Touch™ Thermal Cycler with 96–Well Fast Rection Module | Biorad | 185-1196 | |
SeqCap EZ Hybridization and Wash Kits | Roche Applied Science | 05634253001 | |
SuperScript II Reverse Transcription 200 U/μl | Life Technologies | 18064-014 | |
D1000 ScreenTape | Agilent Technol. Inc. | 5067-5582 | |
Agencourt RNAClean XP - 40 ml | Beckman Coulter Inc | A63987 | |
RNA ScreenTape | Agilent Technol. Inc. | 5067-5576 | |
RNA ScreenTape Ladder | Agilent Technol. Inc. | 5067-5578 | |
RNA ScreenTape Sample Buffer | Agilent Technol. Inc. | 5067-5577 | |
Sodium Hydroxide | Sigma | 72068-100ML | |
DynaBeads MyOne Streptavidin T1 | Life Technologies | 65602 | |
DYNAMAG -96 SIDE EACH | Life Technologies | 12331D | |
Chloroform | Sigma | C2432-1L | |
KAPA HotStart ReadyMix | KAPA Biosystems | KK2602 | |
NanoDrop 2000 Spectrophotometer | Thermo Scientific | ||
My Block Mini Dry Bath | Benchmark | BSH200 | |
D1000 Reagents | Agilent Technol. Inc. | 5067- 5583 | |
Vacufuge Plus | Eppendorf | 022829861 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone