Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Non-restraining EEG radiotelemetry is a valuable methodological approach to record in vivo long-term electroencephalograms from freely moving rodents. This detailed protocol describes stereotaxic epidural and deep intracerebral electrode placement in different brain regions in order to obtain reliable recordings of CNS rhythmicity and CNS related behavioral stages.
Implantable EEG radiotelemetry is of central relevance in the neurological characterization of transgenic mouse models of neuropsychiatric and neurodegenerative diseases as well as epilepsies. This powerful technique does not only provide valuable insights into the underlying pathophysiological mechanisms, i.e., the etiopathogenesis of CNS related diseases, it also facilitates the development of new translational, i.e., therapeutic approaches. Whereas competing techniques that make use of recorder systems used in jackets or tethered systems suffer from their unphysiological restraining to semi-restraining character, radiotelemetric EEG recordings overcome these disadvantages. Technically, implantable EEG radiotelemetry allows for precise and highly sensitive measurement of epidural and deep, intracerebral EEGs under various physiological and pathophysiological conditions. First, we present a detailed protocol of a straight forward, successful, quick and efficient technique for epidural (surface) EEG recordings resulting in high-quality electrocorticograms. Second, we demonstrate how to implant deep, intracerebral EEG electrodes, e.g., in the hippocampus (electrohippocampogram). For both approaches, a computerized 3D stereotaxic electrode implantation system is used. The radiofrequency transmitter itself is implanted into a subcutaneous pouch in both mice and rats. Special attention also has to be paid to pre-, peri- and postoperative treatment of the experimental animals. Preoperative preparation of mice and rats, suitable anesthesia as well as postoperative treatment and pain management are described in detail.
Radiotelemetry is a most valuable methodological approach for measuring a variety of behavioral and physiological parameters in conscious, unrestrained animals of various sizes, particularly in the context of EEG, ECG, EMG, blood pressure, body core temperature or activity measurements 1-7. Theoretically, any species can be analyzed using implantable EEG radiotelemetry from laboratory rodents such as mice and rats to cats, dogs, pigs and primates 3,8. Even fish, reptiles and amphibians are subject to radiotelemetric investigation 9. Over the last two decades, implantable EEG radiotelemetry has proven to be valuable in the characterization of various transgenic animal models of human diseases, such as epilepsies, sleep disorders, neurodegenerative and neuropsychiatric disorders 7,10-12. In the past, numerous methodological approaches collecting physiological data including biopotentials from mice and rats have been described. Worn in jacket recorder systems, physical restraint methods, non-implanted radiotransmitters and tethered systems have received the main attention in the past 13,14. Nowadays, various systems for radiotelemetric implantation are commercially available. However, a literature screen also revealed 29 publications that describe the development of self-made radiotelemetric systems 15-40. Whereas home-made systems are likely to be less expensive and more user adapted, commercially available systems are straight forward, relatively easy to install and can be setup quickly.
Implantable EEG radiotelemetry has a number of advantages compared to competing techniques such as physical restraint methods, worn in jacket systems or tethered approaches. The latter are restraining by definition, i.e., the animal is unable to move or its normal behavior is impaired. It might even be necessary to anesthetize the animal for acquisition of reliable data. Modern tethered systems however are likely to be less restraining, but this needs to be scientifically validated. Radiotelemetry on the other hand allows animals to exhibit their full repertoire of behavior without spatiotemporal restrictions and thus, is thought to be superior to restraining approaches and be more predictive of the results that could be acquired in humans 1,3. It is known for quite a while that restraining approaches can dramatically alter fundamental physiological parameters, e.g., food intake, body core temperature, blood pressure and heart rate and physical activity for example 3. Tethered systems represent one still widely used classical restraining approach 13,14. The electrodes which are either epidural or deep electrodes are generally connected to a miniature socket which is anchored to the skull. The socket itself is exposed for attachment of a cable that allows relatively free movement of the animal. Although nowadays tethered systems have become extremely filigree and highly flexible, one of its major disadvantages is, that it is still semi-restraining. Besides, there might be a risk of infection at the electrode implantation site as the animals tend to manipulate any external devices originating from their body (head). Although wireless radiotelemetry technology in various species has already been described in the late 60s and has thus existed for decades, it has only recently become affordable, reliable, and relatively easy-to-use 10,41,42, particularly in small laboratory rodents such as mice and rats. Small, miniature implantable EEG transmitters are now commercially available and can be implanted in mice greater than 20 g (~10 weeks). Thus, the electrophysiological characterization of transgenic mouse models in particular has become a predominant field of application of implantable EEG radiotelemetry these days. Animal size is no longer an absolute experimental restriction whereas the life-span of the transmitters' battery indeed is. Despite its limited life-time, implantable transmitter systems are capable of minimizing most disadvantages related to potential recording-associated stress by restraining systems. Rodents can present their complete armamentarium of physiological behavior including resting, locomotor activity (exploration) and sleep (REM, slow-wave sleep) 43,44. Importantly, implantable radiotelemetry can strongly reduce animal use 3. Currently, there is an intense discussion on how to limit the number of experimental animals in science and reduce their suffering. Clearly, animal experimentation and animal models of human and animal diseases are essential for our understanding of the bottom-line pathophysiology and subsequent progress in therapy. Furthermore, animal experiments are critical in drug research and development. They do substantially contribute to preclinical/toxicological studies in drug licensing thus committing to both human and animal care. It's noteworthy, that currently no alternatives are yet available to animal research to understand the complex pathophysiological mechanisms which would be otherwise impossible to be elicited. At the same time, the 3R, i.e., replacement, reduction and refinement strategy in the EU and the USA strongly encourages research into complementary and alternative methods. Radiotelemetry is an important example of a successful 3R strategy as it can reduce the number of experimental animals and their suffering compared to other techniques.
Here we provide a detailed and contiguous step-by-step approach to perform a subcutaneous pouch implantation of a radiofrequency transmitter in both mice and rats. This first sequence is followed by a description of stereotaxic epidural and deep intracerebral EEG electrode positioning. Special attention is paid to housing conditions, anesthesia, peri- and postoperative pain management and possible anti-infective treatment. The focus is on the computerized 3D stereotaxic approach to reliably target epidural and deep intracerebral structures. We also comment on frequent experimental pitfalls in EEG electrode implantation and strategies for reduction of trauma and optimization of pain management during postoperative recovery. Finally, examples of surface and deep EEG recordings are presented.
Ethics Statement: All animal experimentation was performed according to the guidelines of the local and institutional Council on Animal Care (University of Bonn, BfArM, LANUV, Germany). In addition, all animal experimentation was carried out in accordance with superior legislation, e.g., the European Communities Council Directive of 24 November 1986 (86/609/EEC) or individual regional or national legislation. Specific effort is made to minimize the number of animals used and their suffering.
1. Experimental Animals
2. EEG Radiotelemetry System
Note: The protocol described is based on a commercially available telemetry systems used for surface and deep intracerebral EEG recordings (Figure 2).
3. Anesthesia and Pain Management
4. Surgical Instrumentation — General Aspects
5. Surgery — Transmitter Placement
6. Stereotaxic Surface Electrode Implantation
7. Stereotaxic Deep Intracerebral EEG Electrode Implantation
8. Post-operative Care and Post-operative Pain Management
This section illustrates examples obtained from surface and deep, intracerebral EEG recordings. Initially it should be stated that baseline recordings under physiological conditions are mandatory prior to subsequent recordings following e.g., pharmacological treatment. Such baseline recordings may provide valuable information about functional interdependence of brain rhythmicity with different behavioral states or sleep / circadian rhythmicity. Here, we show examples of recorded ...
Implantable EEG radiotelemetry is of central relevance as it is a non-restraining technique allowing experimental animals to perform their full repertoire of behavior1,3. This is of major interest as the telemetric approach enables not only spontaneous EEG recordings but also recordings under cognitive tasks and circadian analytical setups, such as T-maze, radial maze, water maze, sleep deprivation tasks or whenever an EEG recording is necessary or helpful during complex cognitive or motor activity.
The authors have nothing to disclose.
The authors would like to thank Dr. Christina Ginkel (German Center for Neurodegenerative Diseases, DZNE), Dr. Michaela Möhring (DZNE) and Dr. Robert Stark (DZNE) for assistance in animal breeding and animal health care. This work was financially supported by the Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM) Bonn, Germany.
Name | Company | Catalog Number | Comments |
Carprofen (Rimadyl VET - InjektionA2:D43slösung) | Pfizer | PZN 0110208 | 20 ml |
binocular surgical magnification microscope | Zeiss Stemi 2000 | 0000001003877, 4355400000000, 0000001063306, 4170530000000, 4170959255000, 4551820000000, 4170959040000, 4170959050000 | |
bulldog serrefine | F.S.T. | 18051-28 | 28mm |
cages (Macrolon) | Techniplast | 1264C, 1290D | |
cold light source | Schott KL2500 LCD | 9.705 202 | ordered at Th.Geyer |
cotton tip applicators (sterile) | Carl Roth | EH12.1 | |
Dexpanthenole (Bepanthen Wund- und Heilsalbe) | Bayer | PZN: 1578818 | |
drapes (sterile) | Hartmann | PZN 0366787 | |
70% ethanol | Carl Roth | 9065.5 | |
0.3% / 3% hydrogene peroxide solution | Sigma | 95321 | 30% stock solution |
gloves (sterile) | Unigloves | 1570 | |
dental glas ionomer cement | KentDental /NORDENTA | 957 321 | |
2% glutaraldehyde solution | Sigma | G6257 | |
Graefe Forceps-curved, serrated | F.S.T. | 11052-10 | |
Halsey Micro Needle Holder-Tungsten Carbide | F.S.T. | 12500-12 | 12.5 cm |
heat-based surgical instrument sterilizer | F.S.T. | 18000-50 | |
heating pad | AEG HK5510 | 520010 | ordered at myToolStore |
high-speed dental drill | Adeor | SI-1708 | |
Iris scissors extra thin | F.S.T. | 14058-09 | 9 cm |
Inhalation narcotic system (isoflurane) | Harvard Apparatus GmbH | 34-1352, 10-1340, 34-0422, 34-1041, 34-0401, 34-1067, 72-3044, 34-0426, 34-0387, 34-0415, 69-0230 | |
Isoflurane | Baxter 250 ml | PZN 6497131 | |
Ketamine | Pfizer | PZN 07506004 | |
lactated Ringer’s solution (sterile) | Braun | L7502 | |
Lexar-Baby Scissors-straight, 10 cm | F.S.T. | 14078-10 | 10 cm |
Nissl staining solution | Armin Baack | BAA31712159 | |
non-absorbable suture material 5-0/6-0 (sterile) | SABANA (Sabafil) | N-63123-45 | |
Covidien (Sofsilk) | S1172, S1173 | ||
Halsey Needle Holder | F.S.T. | 12001-13 | 13 cm |
pads (sterile) | ReWa Krankenhausbedarf | 2003/01 | |
0.9% saline (NaCl, sterile) | Braun | PZN:8609255 | |
scalpel blades with handle (sterile) | propraxis | 2029/10 | |
Standard Pattern Forceps | F.S.T. | 11000-12, 11000-14 | 12 cm and 14.5 cm length |
Steel and tungsten electrodes parylene coated | FHC Inc., USA) | UEWLGESEANND | |
stereotaxic frame | Neurostar | 51730M | ordered at Stoelting |
(Stereo Drive-New Motorized Stereotaxic) | |||
tapes (sterile) | BSN medical GmbH & Co. KG | 626225 | |
TA10ETA-F20 | DSI | 270-0042-001X | Radiofrequency transmitter 3.9 g, 3.9 g, 1.9 cc, input voltage range ± 2.5 mV, channel bandwidth (B) 1-200 Hz, nominal sampling rate (f) 1000 Hz (f = 5B) temperature operating range 34-41 °C warranted battery life 4 months |
TL11M2-F20EET | DSI | 270-0124-001X | Radiofrequency transmitter 3.9 g, 1.9 cc, input voltage range ± 1.25 mV, channel bandwidth (B) 1-50 Hz, nominal sampling rate (f) 250 Hz (f = 5B) temperature operating range 34-41 °C warranted battery life 1.5 months |
Tissue Forceps- 1x2 Teeth 12 cm | F.S.T. | 11021-12 | 12 cm length |
Tungsten carbide iris scissors | F.S.T. | 14558-11 | 11.5 cm |
Vibroslicer 5000 MZ | Electron Microscopy Sciences | 5000-005 | |
Xylazine (Rompun) | Bayer | PZN: 1320422 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaPrzeglądaj więcej artyków
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone