Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Critical challenges for the diabetes research field are to understand the molecular mechanisms that regulate islet β-cell replication and to develop methods for stimulating β-cell regeneration. Herein a high-content screening method to identify and assess the β-cell replication-promoting activity of small molecules is presented.
Loss of insulin-producing β-cells is a central feature of diabetes. While a variety of potential replacement therapies are being explored, expansion of endogenous insulin-producing pancreatic islet β-cells remains an attractive strategy. β-cells have limited spontaneous regenerative activity; consequently, a crucial research effort is to develop a precise understanding of the molecular pathways that restrain β-cell growth and to identify drugs capable of overcoming these restraints. Herein an automated high-content image-based primary-cell screening method to identify β-cell replication-promoting small molecules is presented. Several, limitations of prior methodologies are surmounted. First, use of primary islet cells rather than an immortalized cell-line maximizes retention of in vivo growth restraints. Second, use of mixed-composition islet-cell cultures rather than a β-cell-line allows identification of both lineage-restricted and general growth stimulators. Third, the technique makes practical the use of primary islets, a limiting resource, through use of a 384-well format. Fourth, detrimental experimental variability associated with erratic islet culture quality is overcome through optimization of isolation, dispersion, plating and culture parameters. Fifth, the difficulties of accurately and consistently measuring the low basal replication rate of islet endocrine-cells are surmounted with optimized immunostaining parameters, automated data acquisition and data analysis; automation simultaneously enhances throughput and limits experimenter bias. Notable limitations of this assay are the use of dispersed islet cultures which disrupts islet architecture, the use of rodent rather than human islets and the inherent limitations of throughput and cost associated with the use of primary cells. Importantly, the strategy is easily adapted for human islet replication studies. This assay is well suited for investigating the mitogenic effect of substances on β-cells and the molecular mechanisms that regulate β-cell growth.
Diabetes encompasses a collection of disorders sharing the common end-point of disrupted glucose homeostasis. Although the pathogenic mechanisms of diabetes subtypes are distinct, they share the consequence of decreased β-cell mass, i.e., loss of insulin production capacity1,2. Presently, diabetes treatment strategies rely upon chronic administration of exogenous insulin, pharmacologic stimulation of insulin production or enhancement of insulin sensitivity, and rarely, the transplantation of pancreatic islets or whole pancreas3,4. Regrettably, the success of these strategies is short-lived and/or fails to sufficiently recapitulate the function of endogenous insulin production. Despite the utility of developing a method to stimulate β-cell regeneration, no such approach exists. Consequently, a major diabetes research goal is to develop methods to generate new β-cells or to expand endogenous β-cell mass5. Although β-cell regeneration from renewable sources such as embryonic stem cells is advancing, safety and efficiency concerns make the pursuit of alternative strategies, including expansion of mature β-cells, a priority6,7. Importantly, the predominant source of new β-cells in vivo is pre-existing β-cells rather than specialized progenitor cells8,9. Although β-cells appear to have limited replication capacity, a small increase in β-cell mass (~ 30%) may be sufficient to restore glucose homeostasis in many diabetics. Furthermore, in situ pharmacologic stimulation of β-cell mass is a potentially inexpensive and scalable treatment strategy. Herein a high-content screening method for identifying and characterizing small molecules that stimulate β-cell growth is presented.
A variety of in vitro experimental methods may be used to identify gene products and/or molecules that promote primary β-cell replication. Early efforts for measuring β-cell replication induction used fetal rodent pancreata culture or intact isolated islet cultures to measure [3H] thymidine incorporation, BrdU incorporation or mitotic bodies within the aldehyde-thionine or insulin stained population in response to specific treatment conditions10,11. These in vitro approaches and close variants thereof have several limitations. Prominent deficiencies include (1) the use of fetal cells which, unlike mature β-cells, display a high basal β-cell replication rate and are growth regulated in a distinct manner12; (2) the subjective nature of experimenter-dependent adjudication of β-cell replication events; (3) the labor and time intensive nature of experimenter-dependent counting of β-cell replication events retards experimental throughput; (4) the use of nuclear incorporation/stain/appearance to identify replication events and a non-overlapping cytoplasmic stain to identify β-cells leads to misattribution of proximate non-β-cell replication events to β-cells.
More recently mature primary β-cells have been used to assess the impact of transgene over-expression as well as gene product or compound treatment on β-cell replication13-16. However, these studies have also relied upon subjective counting of replication events, cytoplasmic staining- or non-specific methods for β-cell identification and/or labor-intensive steps that limit throughput, e.g., individual slide-well plating of cells or intact islet paraffin embedding and processing17. Notably, an image-based human β-cell replication screening methodology, similar to the one presented herein, has been published18; however, successful use of this assay has not been demonstrated and the use of human islets for primary screening may not be broadly feasible.
An alternative strategy for identifying replication-promoting substances is to assess growth induction of β-cell lines. Initial efforts used transformed β-cell-lines such as min6 cells or INS 832/13-cells14,19-21. However, these cell-lines demonstrate unrestrained growth and bear little resemblance to well-differentiated β-cells22. Consequently, growth-induction capacity is minimal, of unclear relevance and sometimes difficult to recapitulate. An improved strategy for cell-line based screening utilizes "reversibly transformed" cells that are growth arrested in the absence of tetracycline (doxycycline)-dependent SV40 T antigen expression23,24. However, it is unclear whether these cells revert to a "normal" β-cell-like state upon doxycycline removal. Unfortunately, use of these cells has yielded generalized growth-promoting compounds that don't appear to have immediate utility24. Overall, the use of cell-lines to study growth regulation of a cell-type displaying minimal spontaneous replication activity may have limited applicability.
The β-cell replication screening platform presented herein utilizes mature primary rat β-cells to retain in vivo growth regulation to the extent possible, islet-cell cultures of mixed cell-type composition to enable identification of lineage-restricted growth-promoting activities, multi-well formatting to maximize throughput and automated analysis to eliminate bias and facilitate throughput. Successful use of this platform has enabled identification of several compounds that promote β-cell replication25,26. Additionally, the assay has been used for structure-activity relationship studies and chemical epistasis experiments to provide mechanistic insights into the molecular regulation of β-cell replication. The presented platform was successfully adapted for lentiviral RNAi-based investigation of β-cell replication pathways25. Limitations of the assay include restricted scalability (use of primary cells), use of rodent rather than human islet-cells (though the assay may be adapted for human islet studies), expenses associated with antibody-based imaging and primary islet use, the use of dispersed islets (disrupted islet architecture) to facilitate automated image acquisition and dependence upon the availability of an automated microscope with image acquisition and analysis capability. Although a facile in vivo screening methodology for identifying gene products or compounds that stimulate β-cell regeneration in situ would be ideal, such a platform is not yet available27. Consequently, the described platform is appropriate for researcher interested in investigating most aspects of β-cell replication.
This protocol was carried out in accordance with the Institutional Animal Care and Use Committee (IACUC) of Stanford University School of Medicine. The described protocol is scaled for islet isolation from six 250 - 300 g (8 - 9 weeks old) male Sprague Dawley rats, which is sufficient to generate 228 wells of a 384-well plate for islet-cell replication assessment.
1. Material Preparation
2. Perfusion of the Pancreas
3. Dissociation of the Pancreas
4. Purification of Islets
5. Dispersion and Plating of Islet Cells
6. Islet-cell Culture Treatment, Fixation and Staining
7. β-Cell Replication Analysis
Note: An assay protocol must be established for the high content screening microscope used to measure β-cell replication. In its simplest composition, this protocol is a two-color assay where an identity marker is used to define β-cells (PDX-1+-cells) and a replication marker (Ki-67) is used to define cell division events.
To assess β-cell or α-cell replication, a four-color assay protocol is required. First, objects are identified by DAPI staining (Channel 1, 386 nm). Next, β-cells (event 1) are counted: objects that co-express PDX-1+ (channel 2, 650 nm) and peri-nuclear insulin (channel 3, 549 nm). Subsequently, replicating β-cells (event 2) are counted: β-cells (event 1) that co-express Ki-67 (channel 4, 485 nm) (Figure 3). The percentage of replicatin...
Experimental methods for studying the molecular pathways that control β-cell growth and regeneration are important tools for diabetes researchers. Herein, a rat-islet-based screening platform to identify and characterize small-molecule stimulators of β-cell replication is presented.
While most aspects of this protocol are easily performed by experienced researchers, a few steps require particular technique. First, during islet isolation, cannulation of the bile-duct without disruptin...
The authors declare that they have no competing financial interests.
This work was supported by NIDDK grants DK098143 and DK101530 from the NIH (JPA), Stanford's Spectrum Child Health Research Institute (CHRI) and SPARK (UL1 TR001085, JPA).
Name | Company | Catalog Number | Comments |
250 g male Male Sprague Dawly Rat | Charles River | Stain # 400 | |
12 cm teeth tisuue forceps | Fine Science Tools | 11021-12 | |
11.5 cm fine scissors | Fine Science Tools | 14058-11 | |
14.5 cm surgical scissors | Fine Science Tools | 14001-14 | |
16 cm curved forceps | Fine Science Tools | 11003-16 | |
12 cm curved hepostat | Fine Science Tools | 13011-12 | |
12 cm scalpel handle | Fine Science Tools | 10003-12 | |
Tissue sieve-30 mesh | Bellco Glass | 1985-85000 | |
Cizyme RI, 375,000 CDA units | VitaCyte | 005-1030 | |
Hanks' Balanced Salt solution (Ca++ and Mg++) | Gibco | 24020-117 | |
Ketamine HCl (200 mg/20 ml) | JHP Pharmaceuticals | NDC# 42023-113-10 | to make anesthetic cocktail |
Xylazine (5 g/50 ml) | LLOYD | NADA# 139-236 | to make anesthetic cocktail |
Histopaque 1077 | Sigma | H-1077 | to make histopaque 1100 |
Histopaque 1119 | Sigma | H-1119 | to make histopaque 1100 |
Newborn Calf Serum 500 ml | Hyclone | SH30118.03 | |
Hanks' Balanced Salt solution | Hyclone | SH30268.01 | |
Dulbecco's Modified Eagle Medium/Low Glucose | Hyclone | SH30021.01 | |
Functionality/Viability Solution | Mediatech | 99-768-CV | |
RPMI1640 media | Hyclone | SH30096.01 | to make conditioned medium |
804G rat bladder carcinoma cell-line | Available upon request | to make conditioned medium | |
Fetal Bovine Serum, Qualified | Gibco | 26160 | |
GlutaMax-I | Gibco | 35050-061 | |
Penicillin (5,000 IU/ml/Strptomycin (5 mg/ml) | MP Biomedicals | 1670049 | |
Formamide 500 ml | Fisher BioReagents | BP227-500 | |
Antigen Unmasking Solution 250 ml (pH 6.0) | Vector Laboratories | H-3300 | to make 0.15 M Sodium Sitrate solution |
Dextrose, Anhydrous | EMD Chemicals | DX0145-1 | to make 1 M glucose solution |
Nomal Donkey Serum (Powder) | Jackson ImmunoResearch | 017-000-121 | |
Triton X-100 | Sigma | T8787-100ML | |
Mouse anti-human Ki67 antibody | BD Biosciences | 556003 | |
Goat anti-human PDX-1 antibody | R&D Systems | AF2419 | |
Polyclonal Guinea Pig anti-insulin antibody | Dako | 2016-08 | |
Polyclonal Rabbit anti-glucagon antibody | Dako | 2014-06 | |
Polyclonal Rabbit anti-somatostatin antibody | Dako | 2011-08 | |
Polyclonal chicken anti-vimentin antibody | abcam | ab24525 | |
Biotin-SP-conjugated, Donkey Anti-Mouse IgG | Jackson ImmunoResearch | 715-065-150 | |
StreptAvidin, Alex Flour 488 conjugated | Invitrogen | S32354 | |
Rhodamine-conjugated Donkey Anti-Goat IgG | Jackson ImmunoResearch | 705-025-147 | |
Rhodamine-conjugated Donkey Anti-Guinea Pig IgG | Jackson ImmunoResearch | 706-025-148 | |
Rhodamine-conjugated Donkey Anti-Rabbit IgG | Jackson ImmunoResearch | 711-025-152 | |
Cy 5-conjugated Donkey Anti-Guinea Pig IgG | Jackson ImmunoResearch | 706-175-148 | |
Cy 5-conjugated Donkey Anti-Goat IgG | Jackson ImmunoResearch | 705-175-147 | |
Cy 5-conjugated Donkey Anti-Rabbit IgG | Jackson ImmunoResearch | 711-175-152 | |
Cy 5-conjugated Donkey Anti-Chicken IgG | Jackson ImmunoResearch | 703-175-155 | |
DAPI | Millipore | S7113 | |
Disposable Reagent Reservoir 25 ml | Sorenson BioScience | 39900 | |
384 well, black/clear, tissue culture treated plate | BD Falcon | 353962 | |
96 well, black/clear, tissue culture treated plate | Costar | 3603 | |
Multi-channel pipettor | Costar | 4880 | |
12-channel vaccume aspirator | Drummond | 3-000-096 | |
Cell Scraper | Falcon | 353085 | |
Isotemp Water Bath Model 2223 | Fisher Scientific | ||
High-content screening instrument: ArrayScan VTI | Thermo Scientific |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone