Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This paper describes a method for assessing the interactions and assemblies of integral membrane proteins in vitro with various partner factors in a lipid-proximal environment.
Studies of integral membrane proteins in vitro are frequently complicated by the presence of a hydrophobic transmembrane domain. Further complicating these studies, reincorporation of detergent-solubilized membrane proteins into liposomes is a stochastic process where protein topology is impossible to enforce. This paper offers an alternative method to these challenging techniques that utilizes a liposome-based scaffold. Protein solubility is enhanced by deletion of the transmembrane domain, and these amino acids are replaced with a tethering moiety, such as a His-tag. This tether interacts with an anchoring group (Ni2+ coordinated by nitrilotriacetic acid (NTA(Ni2+)) for His-tagged proteins), which enforces a uniform protein topology at the surface of the liposome. An example is presented wherein the interaction between Dynamin-related protein 1 (Drp1) with an integral membrane protein, Mitochondrial Fission Factor (Mff), was investigated using this scaffold liposome method. In this work, we have demonstrated the ability of Mff to efficiently recruit soluble Drp1 to the surface of liposomes, which stimulated its GTPase activity. Moreover, Drp1 was able to tubulate the Mff-decorated lipid template in the presence of specific lipids. This example demonstrates the effectiveness of scaffold liposomes using structural and functional assays and highlights the role of Mff in regulating Drp1 activity.
Studying membrane-proximal protein-protein interactions is a challenging endeavor due to difficulty in recapitulating the native environment of the integral membrane proteins involved1. This is due to the necessity of detergent solubilization and the inconsistent orientation of proteins in proteoliposomes. In order to avoid these issues, we have employed a strategy whereby soluble domains of integral membrane proteins are expressed as His-tag fusion proteins, and these soluble fragments are anchored to scaffold liposomes via interactions with NTA(Ni2+) headgroups at the lipid surface. Using these scaffolds, lipid-proximal protein interactions can be investigated over a range of lipid and protein compositions.
We have effectively applied this method to investigate the critical protein-protein interactions that govern assembly of the mitochondrial fission complex and examine lipid interactions that modulate this process2. During mitochondrial fission, a conserved membrane remodeling protein, called Dynamin-related protein 1 (Drp1)3, is recruited to the surface of the Outer Mitochondrial Membrane (OMM) in response to cellular signals that regulate energy homeostasis, apoptotic signaling, and several other integral mitochondrial processes. This large, cytosolic GTPase is recruited to the surface of mitochondria through interactions with integral OMM proteins4-8. The role of one such protein, Mitochondrial Fission Factor (Mff), has been difficult to elucidate due to an apparent weak interaction with Drp1 in vitro. Nevertheless, genetic studies have clearly demonstrated that Mff is essential for successful mitochondrial fission7,8. The method described in this manuscript was able to overcome previous shortcomings by introducing simultaneous lipid interactions that promote Drp1-Mff interactions. Overall, this novel assay revealed fundamental interactions guiding assembly of the mitochondrial fission complex and provided a new stage for ongoing structural and functional studies of this essential molecular machine.
To date, examination of interactions between Drp1 and Mff have been complicated by the inherent flexibility of Mff9, the heterogeneity of Drp1 polymers2,10, and the difficulty in purifying and reconstituting full-length Mff with an intact transmembrane domain11. We addressed these challenges by using NTA(Ni2+) scaffold liposomes to reconstitute His-tagged Mff lacking its transmembrane domain(MffΔTM-His6). This strategy was advantageous because MffΔTM was extremely soluble when over-expressed in E. coli, and this isolated protein was easily reconstituted on scaffold liposomes. When tethered to these lipid templates, Mff assumed an identical, outward facing orientation on the surface of the membrane. In addition to these advantages, mitochondrial lipids, such as cardiolipin, were added to stabilize Mff folding and association with the membrane11. Cardiolipin also interacts with the variable domain of Drp12,12 which may stabilize this disordered region and facilitate assembly of the fission machinery.
This robust method is widely applicable for future studies that seek to evaluate membrane-proximal protein interactions. Through the use of additional tethering/affinity interactions, the sophistication of these membrane reconstitution studies can be enhanced to mimic additional complexity found at the surface of membranes within cells. At the same time, lipid compositions can be modified to more accurately mimic the native environments of these macromolecular complexes. In summary, this method provides a means to examine the relative contributions of proteins and lipids in shaping membrane morphologies to during critical cellular processes.
1. Scaffold Liposome Preparation
NOTE: Ideally, initial experiments should use a relatively simple and featureless scaffold (comprised of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine or PC) and DGS-NTA(Ni2+) (1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl](nickel salt)). Building off of these experiments, lipid charge, flexibility, and curvature can be introduced as individual factors with the potential to alter membrane-proximal interactions. These changes can be achieved by adding defined amounts of specific lipid constituents, including phosphatidylserine or cardiolipin (CL), phosphatidylethanolamine (DOPE or PE), or galactosyl(β) ceramide.
2. Use of Scaffold Liposomes for Protein Binding Analysis
3. Use of Scaffold Liposomes for Enzymatic Assay
Note: A colorimetric GTPase assay18 was used to measure phosphate liberation via GTP hydrolysis. Alternative GTPase assays are available19 and can be implemented as needed.
While the interaction between Drp1 and Mff has been demonstrated to be important for mitochondrial fission, this interaction has been difficult to recapitulate in vitro. Our goal was to better emulate the cellular environment wherein Drp1 and Mff interact. To this end, liposomes containing limiting concentrations of NTA(Ni2+) headgroups were prepared by rehydrating a lipid film as described above. The lipid solution initially consists of unilamellar and multilamellar v...
This protocol offers a method for investigating protein-protein interactions involving integral membrane proteins. By utilizing a modular liposome scaffold, investigators are capable of assessing the activity of one or more proteins in a lipid-proximal environment. Previous studies have demonstrated a similar method for receptor enzymes of the plasma membrane24-26. We have expanded this method to incorporate lipid cofactors and explore interactions between proteins that make up the mechan...
The authors have nothing to disclose.
The authors would like to acknowledge the funding received from the American Heart Association (SDG12SDG9130039).
Name | Company | Catalog Number | Comments |
Phosphatidylcholine (DOPC) | Avanti Polar Lipids | 850375 | |
Phosphatidylethanolamine (DOPE) | Avanti Polar Lipids | 850725 | |
DGS-NTA(Ni2+) | Avanti Polar Lipids | 790404 | |
Bovine Heart Cardiolipin (CL) | Avanti Polar Lipids | 840012 | |
Chloroform | Acros Organics | 268320010 | |
Liposome Extruder | Avanti Polar Lipids | 610023 | |
Cu/Rh Negative Stain Grids | Ted Pella | 79712 | |
Microfuge Tube | Beckman | 357448 | |
GTP | Jena Biosciences | NU-1012 | |
GMP-PCP | Sigma Aldrich | M3509 | |
Microtiter Plate strips | Thermo Scientific | 469949 | |
EDTA | Acros Organics | 40993-0010 | |
Instant Blue Coomassie Dye | Expedeon | ISB1L | |
HEPES | Fisher Scientific | BP310 | |
BME | Sigma Aldrich | M6250 | |
KCl | Fisher Scientific | P330 | |
KOH | Fisher Scientific | P250 | |
Magnesium Chloride | Acros Organics | 223211000 | |
4 - 20% SDS-PAGE Gel | Bio Rad | 456-1096 | |
4x Laemmli Loading Dye | Bio Rad | 161-0747 | |
HCL | Fisher Scientific | A144S | |
Malachite Green Carbinol | Sigma Aldrich | 229105 | |
Ammonium Molybdate Tetrahydrate | Sigma Aldrich | A7302 | |
Laboratory Film | Parafilm | PM-996 | |
Uranyl Acetate | Polysciences | 21447 | |
Tecnai T12 100 keV Microscope | FEI | ||
Optima MAX | Beckman | ||
TLA-55 Rotor | Beckman | ||
Refrigerated CentriVap Concentrator | Labconico | ||
Mastercycler Pro Thermocycler | Eppendorf | ||
VersaMax Microplate reader | Molecular Devices |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone