Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Consecutive cryo-sections are collected to enable histological applications and enrichment of RNA for gene expression measurements using adjacent regions from a single mouse skeletal muscle. High-quality RNA is obtained from 20 - 30 mg of pooled cryosections and measurements are directly compared across applications.
With this method, consecutive cryosections are collected to enable both microscopy applications for tissue histology and enrichment of RNA for gene expression using adjacent regions from a single mouse skeletal muscle. Typically, it is challenging to achieve adequate homogenization of small skeletal muscle samples because buffer volumes may be too low for efficient grinding applications, yet without sufficient mechanical disruption, the dense tissue architecture of muscle limits penetration of buffer reagents, ultimately causing low RNA yield. By following the protocol reported here, 30 μm sections are collected and pooled allowing cryosectioning and subsequent needle homogenization to mechanically disrupt the muscle, increasing the surface area exposed for buffer penetration. The primary limitations of the technique are that it requires a cryostat, and it is relatively low throughput. However, high-quality RNA can be obtained from small samples of pooled muscle cryosections, making this method accessible for many different skeletal muscles and other tissues. Furthermore, this technique enables matched analyses (e.g., tissue histopathology and gene expression) from adjacent regions of a single skeletal muscle so that measurements can be directly compared across applications to reduce experimental uncertainty and to reduce replicative animal experiments necessary to source a small tissue for multiple applications.
The goal of this technique is to make multiple experimental analyses by different modalities, such as histology and gene expression, accessible from a single small skeletal muscle source tissue. Microscopy applications are the most sensitive to sample preservation methods, which must be carefully controlled to limit the formation of ice crystal artifacts during cryopreservation. Thus, method development is based on the tibialis anterior (TA) muscle frozen partially covered with embedding resin in a -140 °C liquid nitrogen-cooled 2-methylbutane bath as the source material for both immunofluorescence microscopy and gene expression analyses.
The need to use the same source material for diverse technical approaches is particularly important for intramuscular injection-based experiments where the left and right muscles represent different conditions, one experimental and one control. For example, in muscle regeneration studies, one muscle is injected with a toxin to cause widespread tissue damage while the contralateral muscle serves as a vehicle-injected control1. Similarly, gene therapy studies for muscle disorders typically begin with validation of the gene therapy vector by intramuscular injection to be compared with empty vector, unrelated vector or vehicle control on the contralateral side2. Therefore, it is not possible to source each TA muscle to a different application.
Common strategies to deal with this issue are: i) to use a different muscle group for each application, ii) to use additional mice, or iii) to cut off a piece of the muscle for each application. However, substantial differences between muscle groups make it difficult to compare data from separate applications, and additional animals increase expense and are poorly justified if other alternatives exist. Dividing the muscle after dissection to source different applications is the best option in many cases. However, the muscle pieces are often too small to use pulverization under liquid nitrogen or mechanical grinding techniques for homogenization2-5. As muscle is a highly structural tissue packed with extracellular matrix and contractile proteins, inadequate mechanical homogenization leads to a low yield of subsequent DNA, RNA or protein. The method detailed here allows small quantities of tissue from one source muscle for use in multiple applications, and the inclusion of cryosectioning and needle trituration improves mechanical homogenization for better RNA yield.
Access restricted. Please log in or start a trial to view this content.
All animal procedures were approved by the University of Georgia Institutional Animal Care and Use Committee under animal use protocol A2013 07-016 (Beedle).
1. Cryopreservation of Unfixed Skeletal Muscle
2. Collect Cryosections for Histology and RNA Applications
3. RNA Isolation from Pooled Cryosections
4. Histological Analysis by Immunofluorescent Staining of Muscle Cryosections
Access restricted. Please log in or start a trial to view this content.
Muscle cryosection RNA is high in quality and provides sufficient yield for most applications
Analyses of sixteen skeletal muscle RNA preparations are shown in Table 1 using 19.4 to 41 mg of pooled tibialis anterior (TA) muscle from 8 control mice. Both left (L) and right (R) TA muscles were prepared in regeneration experiments with muscles collected 3 days after longitudinal intramuscular injection of 25 μl o...
Access restricted. Please log in or start a trial to view this content.
To achieve best results with this method, keep embedding resin restricted to the lower third or half of the muscle during tissue cryopreservation because excess resin will slow the collection of the pooled cryosections and may increase embedding resin contamination in the RNA isolation. Also, careful attention during needle homogenization is important to maximize yield and minimize the probability of clogging the needle. The protocol may be modified by using a Luer-Lok syringe to protect against sample loss if the needle...
Access restricted. Please log in or start a trial to view this content.
The author declares that she has no competing financial interests.
Madison Grant, Steven Foltz, Halie Zastre and Junna Luan provided technical assistance. Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award number AR065077. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Cork | VWR Scientific | 23420-708 | Cut into small squares with a sharp blade. |
Plastic coverslip | Fisher Scientific | 12-547 | Used to orient the muscle during freezing. |
Low temperature thermometer | VWR Scientific | 89370-158 | |
2-methylbutane | Sigma | M32631-4L | Caution: hazardous chemical. Store in flammable cabinet. |
Embedding resin: "cryomatrix" | Thermo Fisher Scientific | 6769006 | Other embedding resins can be substituted for cryomatrix. |
Cryostat | Thermo Fisher Scientific | microm HM550 with disposable blade carrier | Any working cryostat should be sufficient for the protocol. |
Disposable cryostat blade | Thermo Fisher Scientific | 3052835 | Use an appropriate blade or knife for the cryostat to be used. |
RNAse decontamination solution: "RNase Zap" | Thermo Fisher Scientific | AM9780 | |
Analytical balance | Mettler Toledo | XS64 | |
Paint brush | Daler Rowney | 214900920 | Use to handle cryosections. Can be found with in stores with simple art supplies. |
Razor blade | VWR Scientific | 55411-050 | |
Microscope slide | VWR Scientific | 48311600 | |
RNA organic extraction reagent: TRIzol | Thermo Fisher Scientific | 15596026 | Caution: TRIzol is a hazardous chemical. Note: Only organic extraction reagents are recommended for RNA extraction from skeletal muscle. |
18 gauge needle | VWR Scientific | BD305185 | |
22 gauge needle | VWR Scientific | BD305155 | |
26 gauge needle | VWR Scientific | BD305115 | Optional. Can be used for a third round of sample trituration in the RNA extraction protocol. |
1 ml syringe | VWR Scientific | BD309659 | For very high value samples, a Luer-Lok syringe is recommended (e.g., VWR BD309628). |
1-bromo-3-chloropentane (BCP) | Sigma | B9673 | |
For 70% ethanol in DEPC water: 200 proof alcohol | Decon Laboratories, Inc. | +M18027161M | Mix 35 ml 200 proof alcohol + 15 ml DEPC water. |
For 70% ethanol in DEPC water: DEPC-treated water | Thermo Fisher Scientific | AM9922 | Mix 35 ml 200 proof alcohol + 15 ml DEPC water. |
RNA purification kit: PureLink RNA minikit | Thermo Fisher Scientific | 12183018A | Final steps of RNA preparation. |
DNase/Rnase-free water | Gibco | 10977 | DEPC-treated water can also be used. |
Spectrophotometer: Nanodrop 2000 | Thermo Fisher Scientific | NanoDrop 2000 | |
Dnase I | Thermo Fisher Scientific | AM2222 | Treat purified RNA to remove any DNA contamination before downstream appications. |
Hydrophobic pen | Thermo Fisher Scientific | 8899 | |
Dulbecco's PBS | Gibco | 14190 | PBS for immunofluorescence protocol. |
Donkey serum | Jackson ImmunoResearch Laoratories, Inc | 017-000-121 | Rehydrate normal donkey serum stock according to the manufacturer's instructions, then dilute an aliquot to 5% for immunofluorescence. Normal goat serum can also be used. |
eMHC antibody | University of Iowa Developmental Studies Hybridoma Bank | F1.652 | |
Collagen VI antibody | Fitzgerald Industries | #70R-CR009x | |
Donkey anti-rabbit AlexaFluor488 | Thermo Fisher Scientific | A21206 | |
Goat anti-mouse IgG1 AlexaFluor546 | Thermo Fisher Scientific | A21123 | |
DAPI (4',6-diamidino-2-phenylindole) | Thermo Fisher Scientific | D1306 | |
Aqueous mounting media: Permafluor | Thermo Fisher Scientific | TA-030-FM | Only use mounting media designed for fluorescent applications with anti-fade properties. |
Glass coverslip | VWR Scientific | 16004-314 | Use for mounting slides at the end of immunofluorescence protocl |
Image analysis software: ImageProExpress | Media Cybernetics, Inc. | Image-Pro Express, or more advanced products | Freeware ImageJ should also work for manual counting. More advanced software with segmentation abiities may allow partial automation of the process; e.g., ImageProPremier. |
Merge and map section images: Photoshop | Adobe | Photoshop | |
Cardiotoxin | Sigma | C9659 | Sigma C9659 has been discontinued. Other options for cardiotoxin are EMD Millipore #217503; American Custom Chemicals Corp. # BIO0000618; or Ge Script # RP17303; but these have not been validated. |
reverse transcription kit: Superscript III First-strand synthesis system | Thermo Fisher Scientific | 18080051 | Any validated, high quality reverse transcription reagents can be used. |
Standard PCR: GoTaq Flexi polymerase system | Promega | M8298 | Any validated, high quality Taq polymerase system can be used. If DNA sequencing is to be used for any application downstream of the PCR, then a high fidelity PCR system should be used instead. |
SYBR green | Thermo Fisher Scientific | S7585 | For use in qPCR when not using a dedicated qPCR master mix. Use with SuperROX (for Applied Biosystems instruments) and GoTaq Flexi polymerase and buffers. |
ROX: SuperROX, 15 mM | BioResearch Technologies, Inc. Novato CA | SR-1000-10 | SuperROX is more stable in the PCR reaction, so it is preferred for use as a qPCR passive reference dye over ROX (carboxy-X-rhodamine). For qPCR with Applied Biosystems instruments |
Real-time PCR | Applied Biosystems | 7900HT |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone