Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We present three novel and more efficient protocols for differentiating human induced pluripotent stem cells into cardiomyocytes, endothelial cells, and smooth muscle cells and a delivery method that improves the engraftment of transplanted cells by combining cell injection with patch-mediated cytokine delivery.
Human induced pluripotent stem cells (hiPSCs) must be fully differentiated into specific cell types before administration, but conventional protocols for differentiating hiPSCs into cardiomyocytes (hiPSC-CMs), endothelial cells (hiPSC-ECs), and smooth muscle cells (SMCs) are often limited by low yield, purity, and/or poor phenotypic stability. Here, we present novel protocols for generating hiPSC-CMs, -ECs, and -SMCs that are substantially more efficient than conventional methods, as well as a method for combining cell injection with a cytokine-containing patch created over the site of administration. The patch improves both the retention of the injected cells, by sealing the needle track to prevent the cells from being squeezed out of the myocardium, and cell survival, by releasing insulin-like growth factor (IGF) over an extended period. In a swine model of myocardial ischemia-reperfusion injury, the rate of engraftment was more than two-fold greater when the cells were administered with the cytokine-containing patch comparing to the cells without patch, and treatment with both the cells and the patch, but not with the cells alone, was associated with significant improvements in cardiac function and infarct size.
Human induced pluripotent stem cells (hiPSCs) are among the most promising agents for regenerative cell therapy because they can be differentiated into a potentially unlimited range and quantity of cells that are not rejected by the patient's immune system. However, their capacity for self-replication and differentiation can also lead to tumor formation and, consequently, hiPSCs need to be fully differentiated into specific cell types, such as cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs), before administration. One of the simplest and most common methods of cell administration is direct intramyocardial injection, but the number of transplanted cells that are engrafted by the native myocardial tissue is exceptionally low. Much of this attrition can be attributed to the cytotoxic environment of the ischemic tissue; however, when murine embryonic stem cells (ESCs) were injected directly into the myocardium of uninjured hearts, only ~40% of the 5 million cells delivered were retained for 3-5 hr1, which suggests that a substantial proportion of the administered cells exited the administration site, perhaps because they were squeezed out through the needle track by the high pressures produced during myocardial contraction.
Here, we present novel and substantially more efficient methods for generating hiPSC-derived cardiomyocytes (hiPSC-CMs)2, endothelial cells (hiPSC-ECs)3, and smooth muscle cells (SMCs)4. Notably, this hiPSC-SMC protocol is the first to mimic the wide range of morphological and functional characteristics observed in somatic SMCs5 by directing the cells toward a predominantly synthetic or contractile SMC phenotype. We also provide a method of cell delivery that improves the engraftment rate of injected cells by creating a cytokine-containing fibrin patch over the injection site. The patch appears to improve both cell retention, by sealing the needle track to prevent the cells from exiting the myocardium, and cell survival, by releasing insulin-like growth factor (IGF) over a period of at least three days.
All experimental procedures are performed in accordance with the Animal Guidelines of the University of Alabama at Birmingham.
1. Differentiating hiPSCs into hiPSC-CMs
2. Differentiating hiPSCs into hiPSC-ECs
3. Differentiating hiPSCs into hiPSC-SMCs
4. Creating the IGF-containing Microspheres
5. Creating the Patch over the Site of Injury and Injecting the Cells
Characterization of Differentiated hiPSC-CMs, -ECs, and -SMCs
The differential capacity of hiPSCs were evaluated2,3,4. Flow cytometry analyses of cardiac troponin T (cTnT) expression suggest that the purity of the final hiPSC-CM population can exceed 90% (Figure 1A, 1B, panel B1). Nearly all of the cells e...
Improved Yield/Purity of hiPSC-CMs
Conventional protocols for differentiating human stem cells into CMs are often limited by low yield and purity; for example, just 35-66% of hESC-CMs obtained via Percoll separation and cardiac body formation expressed slow myosin heavy chain or cTnT6. The purity of differentiated hiPSC-CM populations can be substantially increased by selecting for the expression of a reporter gene that has been linked to the promoter of a CM-specific prot...
None.
This work was supported by US Public Health Service grants NIH RO1s HL67828, HL95077, HL114120, and UO1 HL100407-project 4 (to JZ), an American Heart Association Scientist Development Grant (16SDG30410018) and a Research Voucher Award from University of Alabama at Birmingham Center for Clinical and Translational Science (to WZ).
Name | Company | Catalog Number | Comments |
Protocol Section 1 | |||
mTeSR1 medium | Stem cell technologies | 5850 | |
Growth-factor-reduced matrigel | Corning lifescience | 356231 | |
Y-27632 | Stem cell technologies | 72304 | |
B27 supplement, serum free | Fisher Scientific | 17504044 | |
RPMI1640 | Fisher Scientific | 11875-119 | |
Activin A | R&D | 338-AC-010 | |
BMP-4 | R&D | 314-BP-010 | |
bFGF | R&D | 232-FA-025 | |
Collagenase IV | Fisher Scientific | NC0217889 | |
Hanks Balanced Salt Solution (Dextrose, KCl, KH2PO4, NaHCO3, NaCl, Na2HPO4 anhydrous) | Fisher Scientific | 14175079 | |
Fetal Bovine Serum | Fisher Scientific | 10438018 | |
6-well plate | Corning Lifescience | 356721 | |
10 cm dish | Corning Lifescience | 354732 | |
Cell incubator | Panasonic | MCO-18AC | |
Protocol Section 2 | |||
Versene | Fisher Scientific | 15040066 | |
Fibrinogen | Sigma-Aldrich | F8630-5g | |
Thrombin | Sigma-Aldrich | T7009-1KU | |
EMB2 medium | Lonza | CC-3156 | |
VEGF | ProSpec-Tany | CYT-241 | |
EPO | Life Technologies | PHC9431 | |
TGF-β | Peprotech | 100-21C | |
EGM2-MV medium | Lonza | CC-4147 | |
SB-431542 | Selleckchem | S1067 | |
CD31 | BD Bioscience | BDB555445 | |
CD144 | BD Bioscience | 560411 | |
15 ml centrifuge tube | Fisher Scientific | 12565269 | |
Eppendorff Centrifuge | Eppendorf | 5702R | |
Protocol Section 3 | |||
CHIR99021 | Stem cell technologies | 720542 | |
PDGF-β | Prospec | CYT-501-10ug | |
Protocol Section 4 | |||
Olive oil | Sigma-Aldrich | O1514 | |
Gelatin | Sigma-Aldrich | G9391 | |
Acetone | Sigma-Aldrich | 179124 | |
Ethanol | Fisher Scientific | BP2818100 | |
Glutaraldehyde | Sigma-Aldrich | G5882 | |
Glycine | Sigma-Aldrich | G8898 | |
IGF | R&D | 291-G1-01M | |
Bovine serum albumin | Fisher Scientific | 15561020 | |
Heating plate | Fisher Scientific | SP88850200 | |
Water bath | Fisher Scientific | 15-462-10Q | |
Protocol Section 5 | |||
CaCl2 | Sigma-Aldrich | 223506 | |
ε-aminocaproic acid | Sigma-Aldrich | A0420000 | |
MEM medium | Fisher Scientific | 12561-056 | |
Syringe | Fisher Scientific | 1482748 | |
Anesthesia ventilator | Datex-Ohmeda | 47810 | |
Anesthesia ventilator | Ohio Medical | V5A | |
Defibrillator | Physiol Control | LIFEPAK 15 | |
1.5 T MRI | General Electric | Signa Horizon LX | |
7 T MRI | Siemens | 10018532 | |
Gadolinium Contrast Medium (Magnevist) | Berlex | 50419-188-02 | |
2-0 silk suture | Ethilon | 685H | |
3-0 silk suture | Ethilon | 622H | |
3-0 monofilament suture | Ethilon | 627H |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone