Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes the reconstitution of nucleosomes containing differentially isotope-labeled sister histones. At the same time, asymmetrically post-translationally modified nucleosomes can be generated after using a premodified histone copy. These preparations can be readily used to study modification crosstalk mechanisms, simultaneously on both sister histones, by using high-resolution NMR spectroscopy.
Asymmetrically modified nucleosomes contain the two copies of a histone (sister histones) decorated with distinct sets of Post-translational Modifications (PTMs). They are newly identified species with unknown means of establishment and functional implications. Current analytical methods are inadequate to detect the copy-specific occurrence of PTMs on the nucleosomal sister histones. This protocol presents a biochemical method for the in vitro reconstitution of nucleosomes containing differentially isotope-labeled sister histones. The generated complex can be also asymmetrically modified, after including a premodified histone pool during refolding of histone subcomplexes. These asymmetric nucleosome preparations can be readily reacted with histone-modifying enzymes to study modification cross-talk mechanisms imposed by the asymmetrically pre-incorporated PTM using nuclear magnetic resonance (NMR) spectroscopy. Particularly, the modification reactions in real-time can be mapped independently on the two sister histones by performing different types of NMR correlation experiments, tailored for the respective isotope type. This methodology provides the means to study crosstalk mechanisms that contribute to the formation and propagation of asymmetric PTM patterns on nucleosomal complexes.
Eukaryotic DNA is tightly packaged within cell nuclei into chromatin. The fundamental building block of chromatin is the nucleosome core particle that contains ~147 bp of DNA wrapped around an octameric complex made up of two copies each of the four core histones (H3, H4, H2A, H2B). Histone proteins harbor a plethora of Post-translational Modifications (PTMs). These covalent substitutions induce alterations in chromatin structure, both directly by affecting the physical chemistry of the system and indirectly by recruiting chromatin-remodeling activities1,2,3. By those means, histone PTMs control chromatin accessibility and, hence, regulate all DNA-based cellular functions4.
PTMs are installed by histone-modifying enzyme systems mainly on the unstructured N-terminal segments (tails) of nucleosome-incorporated core histones. Due to the many modification sites on the relatively short sequence of histone tails, PTMs influence each other by inducing or blocking subsequent modification reactions, an effect known as modification cross-talk5. Because of the overall symmetric architecture of the nucleosome, modification reactions and crosstalk mechanisms were thought to occur similarly onto the two copies of each nucleosomal histone (sister histones). This concept was recently challenged and subsequently disproved. Particularly, in vitro enzymatic assays on free histone H3 tail peptides and on nucleosomes demonstrated that a set of H3 kinases introduced phosphorylation in an asymmetric manner6. Additionally, affinity-purification-based LC-MS/MS analysis revealed the existence of asymmetrically H3-methylated nucleosomes in several types of eukaryotic cells7. Thus, asymmetrically modified nucleosomes constitute novel species, and tools are needed to uncover the mechanisms that control their formation and to analyze the crosstalk effects that this asymmetry might exert.
Commonly, Western Blotting (WB) and Mass Spectrometry (MS) analysis have been used to detect histone PTMs. Despite its easy application, WB suffers from specificity/cross-reactivity problems. On top of that, it is incapable of performing simultaneous multi-PTM analysis and direct quantification of the modification reactions8. On the other hand, MS analysis employs sophisticated instrumentation that requires high-level training, but provides high specificity as well as simultaneous mapping and quantification of multiple PTMs9. However, both methods are disruptive and the nucleosomal complexes are dissociated before analysis, giving rise to a mixture of histones and/or histone-derived peptides. This manipulation removes the ability to distinguish independent modification reactions that occur on each of the two sister histones and to report the copy-specific modification status of the nucleosomal histones.
Nuclear Magnetic Resonance (NMR) spectroscopy evolved as an alternative method to map PTM reactions. NMR is nondisruptive and thus allows the monitoring of PTM events in a real-time manner in reconstituted mixtures, and even in intact cells10,11. The development of routines for fast data acquisition as well as for high-resolution mapping based on 2D hetero-nuclear correlation methods of isotope-labeled (15N and/or 13C) samples12 allowed the simultaneous mapping of different types of PTMs, such as serine/threonine/tyrosine phosphorylation, lysine acetylation/methylation, and arginine methylation13. Depending on the PTM under investigation, 15N- or 13C-labeling protocols can be employed to mark the protein functional group that serves as a modification reporter. Consequently, PTM mapping can be performed by following the characteristic chemical shift displacement of the corresponding functional group 'sensing' the alteration on the chemical environment. In most cases, both N-H and C-H chemical groups can be used to report the evolution of the PTM of interest.
The current protocol describes the generation of nucleosomes containing differentially isotope-labeled sister histones. It combines the flexibility of NMR spectroscopy to map PTMs using both 1H-15N and 1H-13C correlation spectra with the utilization of different protein affinity tags for purification of the selected reconstituted histone complexes. Notably, the protocol employs two different pools of a particular histone for nucleosome reconstitution. These pools are differentially isotope-labeled (one with 15N, the other with 13C), and they are fused to a polyhistidine and a streptavidin affinity tag, respectively. A tandem affinity purification scheme with Ni-NTA and streptavidin-based chromatography initially used by Voigt et al.7 is employed to purify asymmetric species from symmetric counterparts (Figure 1A). Asymmetric histone octamers are used subsequently to reconstitute equivalent nucleosomal complexes (Figure 1B), using the standard salt dialysis method14. Additionally, through the same procedure and by having one of the histone pools pre-modified, a PTM can be incorporated asymmetrically onto the resulting nucleosomes. The reaction of these substrates with histone-modifying enzymes and subsequent NMR-mapping of modification events enable the characterization of crosstalk mechanisms both in-cis (premodified histone copy) and in-trans (unmodified histone copy) (Figure 1C).
1. Reconstitution of Nucleosomes with Differentially Isotope-labeled (and Asymmetrically Modified) Sister Histones
NOTE: The current protocol describes the reconstitution of nucleosomes with differentially isotope-labeled histone H3. To this end, two pools of histone H3 were used; one was 15N-labeled and contained a 6xHis-tag at the N-terminus and the second was 13C-labeled and contained the Strep peptide (WSHPQFEK) fused at the N-terminus. Both tags were separated from the native H3 sequence with a Tobacco Etch Virus (TEV) protease recognition site. To prepare additional asymmetrically modified nucleosomes, one of the two H3 pools is included in a premodified form. Premodification of a histone pool can be performed by reacting the isotope-labeled histone of interest with the respective histone-modifying enzyme in the presence of the necessary for each type of reaction cofactors/PTM donors16. The efficient placement of the respective PTM can be assessed by NMR spectroscopy or mass spectrometry. The amounts of histones/DNA used here are rough recommendations to obtain a nucleosome preparation with an approximate concentration of 10 µM (measured as DNA concentration at 260 nm).This final yield is sufficient to record good quality NMR spectra with relatively short acquisition times.
2. NMR Analysis of Modification Reactions on the Two Sister Histones
NOTE: Assignment of 2D 1H-15N correlation spectra of nucleosomal histone tails can be found at references16,17,18. Additionally, assignments of CHx groups of lysines, serines and threonines on 2D 1H-13C correlation spectra can be found at reference16.
Properly refolded octameric species are isolated after a run of the reconstitution mixture through a gel filtration column (Figure 2). The reconstituted octameric pool containing the three different types of octamers is subjected to the tandem affinity purification scheme. Samples are collected from all the steps and analyzed by SDS-PAGE and subsequently WB. Verification of the correct execution of the protocol that results in the isolation of asymmetric species is achiev...
For nucleosome reconstitution, the current protocol utilizes a 165 bp long DNA template containing the 601-Widom nucleosome positioning sequence20, but similar performance is expected using various lengths of DNA templates. The protocol was designed and employed using asymmetric types of histone H3. With the same principle, the method can be applied also for the other core histones and additionally can be used to reconstitute complexes carrying two distinct core histones with different isotope lab...
The author has nothing to disclose.
The author thanks Dr. Philipp Selenko (FMP-Berlin) for providing wet-lab space and infrastructure to perform experiments and Deutsche Forschungsgemeinschaft (DFG) for funding the work through a research grant (LI 2402/2-1).
Name | Company | Catalog Number | Comments |
Unfolding Buffer | 7M guanidinium HCl | ||
20mM Tris pH7.5 | |||
10mM DTT | |||
Refolding Buffer | 10mM Tris pH7.5 | ||
2M NaCl | |||
1mM EDTA | |||
2mM DTT | |||
Assay Buffer | 25mM NaxHxPO4 pH6.8 | ||
25mM NaCl | |||
2mM DTT | |||
Guanidinium HCl | Applichem | A14199 | Use high quality Gu-HCl |
Tris | Roth | 4855.2 | |
DTT | Applichem | A1101 | |
NaCl | VWR chemicals | 27810.364 | |
EDTA | Roth | 8043.2 | |
Na2HPO4 | Applichem | A1046 | |
NaH2PO4 | Applichem | A3902 | |
Imidazole | Applichem | A1073 | |
d-Desthiobiotin | Sigma | D1411 | |
Ni-NTA Superflow | Qiagen | 1034557 | |
Strep-Tactin Superflow | IBA | 2-1207-001 | |
His-probe antibody | Santa Cruz | sc-8036 | |
Strep-tactin conjugated HRP | IBA | 2-1502-001 | |
Hi-Load 16/600 Superdex 200pg | GE Healthcare | 28-9893-35 | |
6-8kDa dialysis membrane | Spectrumlabs | spectra/por 1, 132650 | |
50kDa dialysis membrane | Spectrumlabs | spectra/por 7, 132129 | |
10kDa centrigugal filter unit | Merck Millipore | UFC901024 | |
30kDa centrigugal filter unit | Merck Millipore | UFC903024 | |
Solution-state NMR spectrometer | at least 500 MHz operating frequency, equipped with a triple-resonance cryoprobe |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone