Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
In this protocol, caged protein kinase A (PKA), a cellular signal transduction bioeffector, was immobilized on a nanoparticle surface, microinjected into the cytosol, and activated by the upconverted UV light from near-infrared (NIR) irradiation, inducing downstream stress fiber disintegration in the cytosol.
Upconversion nanoparticle (UCNP)-mediated photoactivation is a new approach to remotely control bioeffectors with much less phototoxicity and with deeper tissue penetration. However, the existing instrumentation on the market is not readily compatible with upconversion application. Therefore, modifying the commercially available instrument is essential for this research. In this paper, we first illustrate the modifications of a conventional fluorimeter and fluorescence microscope to make them compatible for photon upconversion experiments. We then describe the synthesis of a near-infrared (NIR)-triggered caged protein kinase A catalytic subunit (PKA) immobilized on a UCNP complex. Parameters for microinjection and NIR photoactivation procedures are also reported. After the caged PKA-UCNP is microinjected into REF52 fibroblast cells, the NIR irradiation, which is significantly superior to conventional UV irradiation, efficiently triggers the PKA signal transduction pathway in living cells. In addition, positive and negative control experiments confirm that the PKA-induced pathway leading to the disintegration of stress fibers is specifically triggered by NIR irradiation. Thus, the use of protein-modified UCNP provides an innovative approach to remotely control light-modulated cellular experiments, in which direct exposure to UV light must be avoided.
Chemically modified proteins that can be photoactivated (e.g., PKA caged proteins) have been developed as an emerging field in chemical biology to non-invasively manipulate intercellular biochemical processes1,2,3. Using light as a stimulus provides excellent spatiotemporal resolution when activating these caged proteins. However, UV light can cause undesired morphological changes, apoptosis, and DNA damage to cells4,5. Hence, recent developments in the design of photocaging groups focus on enabling photocleavage upon longer-wavelength or two-photon excitation to reduce phototoxicity, as well as to increase deep-tissue penetration6,7. Caging groups that respond to longer wavelength allowing us to choose suitable uncaging wavelengths (i.e., channels) to selectively activate bioeffectors when two or more caging groups are present7. Given these useful features, developing new red-light photocaging groups is very important upstream work in photochemical methodologies for biological studies ranging from probing the mechanisms of reactions to controlling cellular activities8. Nonetheless, a two-photon caging group is normally too hydrophobic due to the fused aromatic ring structure, and a visible-light caging group is normally organometallic, with aromatic ligands. This hydrophobic/aromatic property is not suitable when the bioeffector is a protein or enzyme, as it denatures the activation site of the enzyme/protein and causes loss of function, even if the conjugation and photolysis still work on the chemical level2,9.
UCNPs are effective transducers that convert the NIR excitation light to UV.This unique and fascinating property of UCNPs has offered realistic resolutions to address the challenges associated with photoactivation and triggered controlled release of small molecules, including folic acid10, cisplatin derivatives11, DNA/siRNA12, copolymer vesicles13, and hollow particles14. However, to the best of our knowledge, the UCNP-assisted photoactivation of enzymes or proteins has not been tested so far. Because there is no successful case of using red light or NIR to photoactive an enzyme, we were prompted to perform the NIR-triggered activation of a protein/enzyme construct composed of chemically modified caged enzyme complexes with a silica-coated, lanthanide-doped UCNP15. In this study, the UCNP was conjugated with a rapidly reacting signal transduction kinase in the form of caged PKA. PKA controls glycogen synthesis and cytoskeletal regulation that responds to external stimuli via cyclic adenosine phosphate (cAMP) regulation in the cytosol16. We studied the feasibility of enzyme activation in temporal and spatial manners in a cellular experiment after NIR irradiation. This UCNP-assisted photoactivation platform is a new methodology to photoactivate an enzyme using NIR and avoids the undesired signal transduction response from cells caused by conventional UV irradiation2,4.
It is very difficult to translocate large bioeffectors (e.g., proteins) across the cell membrane to control cellular activity. Although particle-immobilized protein may be easier to translocate via endocytosis into the cytosol, endocytosis may be damaged or degraded via endosomal entrapment and the consequent lysosomal degradation2,4. Even if the caged protein is still functional after membrane translocation, the translocated amounts may not be enough to trigger the cellular response2,17. In sharp contrast, microinjection is a direct and quantitative approach to deliver large bioeffectors to the cytoplasm of the cell. Moreover, UCNP-immobilized bioeffector requires upconverted light to be activated. Therefore, the optical instrumentation requires further modification to measure, visualize, and utilize the upconversion light. In this work, the delivery of a caged PKA-UCNP complex to a cell using microinjection and the following essential spectroscopy and microscopy modifications for NIR photoactivation will be described in detail.
NOTE: The protocol describes a detailed instrumentation modification for upconversion-assisted photoactivation, a synthetic procedure to generate caged PKA-UCNP, transmission electron microscopy (TEM) of the silica-coated UCNP and caged PKA-UCNP samples, UV and NIR photolysis setup, cell preparation, PKA-UCNP microinjection, a photoactivation study, and the stress fiber staining of REF52 cells.
1. Fluorimeter Setup for Upconversion Spectrum Measurement
2. Microscope Setup
NOTE: The following setup works for microscopes equipped with a two-tier optical path. If the user intends to install an excitation light source switch in the back port to make the NIR laser and the halide lamp share the same port, the collimator in the back port will significantly block the NIR because it is designed to reduce sample heating. The user must make a difficult choice: keep the collimator in and suffer from very low upconversion efficiency, or remove the collimator and sacrifice the intensity of excitation light for the epifluorescence.
NOTE: A cutaway diagram showing the light path scheme for a modified spectrofluorometer, the microscopy for upconversion luminescence and NIR photolysis mode and for epifluorescence and UV photolysis mode, and the experimental setup used for this experiment are illustrated in Figure 2.
3. Preparation and Characterization of Caged PKA-UCNP Construct
4. Characterization
NOTE: The kinase assay is used to quantify the specific activity of pyruvate kinase. In brief, the phosphorylation of the peptide, which is coupled to pyruvate kinase and lactate dehydrogenase, results in the oxidation of NADH. Formation of the latter is monitored by measuring the decrease in absorbance of NADH at 340 nm.
5. Photolysis Setup
6. Cell Sample Preparation and Microinjection of PKA-UCNP Complexes
7. Photoactivation of Caged PKA-UCNP Using UV or NIR Light in Living Cells
8. Visualization of Stress Fiber Disintegration Caused by NIR Photoactivation
The design of the caged enzyme-UCNP construct is illustrated in Figure 1. The PKA enzyme was first reacted with 2-nitrobenzyl bromide to generate an inactive caged PKA, and it was then electrostatically immobilized on the surface of UCNP. UCNPs emit the upconverted light and consequently photolytically cleave the o-nitrobenzyl groups on Cys 199 and Cys 343, generating the activated PKA. TEM images and Bradford assay confirmed that the PKA and caged PKA were i...
Previously, Hofmann and coworkers found that dramatic morphological changes were observed in REF52 cells after the microinjection of the free PKA19. In another study, the Lawrence group demonstrated that caged PKA can be activated in vivo, leading to morphological changes and the disintegration of stress fibers when subjected to UV photolysis20. Earlier reports on exploiting upconverted UV light for photoactivation showed the activation of the several UCNP-assisted...
The authors declare that they have no competing financial interests.
We thank the Nano Science and Technology Program of Academia Sinica and the Ministry of Science and Technology of Taiwan for the funding (101-2113-M-001-001-MY2; 103-2113-M-001-028-MY2).
Name | Company | Catalog Number | Comments |
Reagent | |||
Tris(hydroxymethyl)aminomethane | Sigma | 154563 | |
Magnesium chloride hexahydrate | Sigma | M9272 | |
MOPS | Sigma | M1254 | |
HEPES | Sigma | H4034 | |
Sodium chloride | Sigma | 31434 | |
Potassium chloride | Sigma | 12636 | |
Yttrium acetate hydrate | Sigma | 326046 | Y(C2H3CO2)3 · xH2O |
Thulium(III) acetate hydrate | Alfa Aesar | 14582 | Tm(CH3CO2)3 · xH2O |
Ytterbium(III) acetate tetrahydrate | Sigma | 326011 | Yb(C2H3O2)3 · 4H2O |
1-Octadecene | Sigma | O806 | |
Oleic acid | Sigma | 364525 | |
Methanol | macron | 304168 | |
Sodium hydroxide | Sigma | 30620 | |
Ammonium fluoride | J.T.Baker | 69804 | |
IGEPAL CO-520 | Sigma | 238643 | |
Cyclohexane | J.T.Baker | 920601 | |
Ammonium hydroxide (28% - 30%) | J.T.Baker | 972101 | Ammonia |
Tetraethyl orthosilicate (TEOS) | Sigma | 8658 | |
DL-Dithiothreitol (DTT) | Sigma | D0632 | |
N-hydroxymaleimide (NHM) | Sigma | 226351 | PKA activity blocking reagent |
Prionex protein stabilizer solution from hog collagen | Sigma | 81662 | Protein stabilizer solution |
2-nitrobenzyl bromide (NBB) | Sigma | 107794 | PKA caging reagent |
8-(4-Chlorophenylthio)adenosine 3′,5′-cyclic monophosphate sodium salt | Sigma | C3912 | 8-CPT-cAMP |
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscle | Sigma | P0294 | PK/LDH |
Adenosine 5'-triphosphate disodium | Sigma | A2387 | ATP |
β-NADH reduced from dipotassium | Sigma | N4505 | |
Phosphoenolpyruvate | Sigma | P7127 | PEP |
Coomassie Protein Assay Reagent, 950 mL | Thermo Scientific | 23200 | Bradford assay reagent |
cAMP-dependent protein kinase | Promega | V5161 | PKA activity control |
pET15b-PKACAT plasmid | Addgene | #14921 | |
pKaede-MC1 plasmid | CoralHue | AM-V0012 | |
Phosphate buffered saline (PBS), pH 7.4 | Thermo Scientific | 10010023 | |
DMEM, high glucose, pyruvate | Gibco | 12800-017 | Cell culture medium |
Leibovitz L-15 Medium | Biological Industries | 01-115-1A | Cell culture medium |
Fetal Bovine Serum | Biological Industries | 04-001-1A | |
Paraformaldehyde | ACROS | 416785000 | |
DAPI | Invitrogen | D1306 | Nucleus staining dye |
Alexa 594-phalloidin | Invitrogen | A12381 | F-actin staining dye |
5(6)-Carboxytetramethylrhodamine | Novabiochem | 8.51030.9999 | |
Pierce Coomassie (Bradford) Protein Assay Kit | Thermo Scientific | 23200 | |
CelluSep T4 Tubings/Nominal filter rating MWCO 12,000 - 14,000 Da | Membrane Filtration Products, Inc. | 1430-33 | Dialysis membrane |
Millex-HV Syringe Filter Unit, 0.45 µm, PVDF, 13 mm, gamma sterilized | EMD Milipore | SLHVX13NL | |
Equipment | |||
Dynamic Light Scattering/Zetapotential Zetasizer nano-ZS | Malvern | M104 | |
Transmission Electron Microscope | JEOL | JEM-1400 | |
Fluorescence Spectrophotometer | Agilent Technologies | 10075200 | Cary Eclipse |
UV-Vis Spectrophotometer | Agilent Technologies | 10068900 | Cary 50 |
Fluorescence Microscope | Olympus | IX-71 | |
950 nm longpass filter | Thorlabs | FEL0950 | |
850 nm dichroic mirror shortpass | Chroma | NC265609 | |
RT3 color CCD system | SPOT | RT2520 | |
Fluorescence Illumination | PRIOR | Lumen 200 | |
980 nm Infra-red diode laser | CNI | MDL-N-980-8W | |
UV LED Spot Light Source | UVATA | UVATA-UPS412 | With a UPH-056-365 nm LED at 200 mW/cm2 |
Thermal pile sensor | OPHIR | 12A-V1-ROHS | |
Picospritzer III | Parker Hannifin | 052-0500-900 | Intracellular Microinjection Dispense Systems |
PC-10 Needle puller | Narishige | PC-10 | |
MANOMETER Digital pressure gauge | Lutron | PM-9100 | |
One-axis Oil Hydraulic Micromanipulator | Narishige | MMO-220A | |
Heraeus Fresco 17 Centrifuge, Refrigerated | Thermo Scientific | 75002421 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone