Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The retina shares prominent similarities with the brain and thus represents a unique window to study vasculature and neuronal structure in the brain non-invasively. This protocol describes a method to study dementia using retinal imaging techniques. This method can potentially aid in diagnosis and risk assessment of dementia.
The retina offers a unique “window” to study pathophysiological processes of dementia in the brain, as it is an extension of the central nervous system (CNS) and shares prominent similarities with the brain in terms of embryological origin, anatomical features and physiological properties. The vascular and neuronal structure in the retina can now be visualized easily and non-invasively using retinal imaging techniques, including fundus photography and optical coherence tomography (OCT), and quantified semi-automatically using computer-assisted analysis programs. Studying the associations between vascular and neuronal changes in the retina and dementia could improve our understanding of dementia and, potentially, aid in diagnosis and risk assessment. This protocol aims to describe a method of quantifying and analyzing retinal vasculature and neuronal structure, which are potentially associated with dementia. This protocol also provides examples of retinal changes in subjects with dementia, and discusses technical issues and current limitations of retinal imaging.
Owing to increases in life expectancy, dementia has become a major medical problem, contributing to significant social and economic health burden globally1,2,3,4,5. Today, a person in the United States develops Alzheimer’s Disease (AD), the most common form of dementia, every 66 s6. It has been estimated that by the year 2050, 115 million people will be affected by AD7.
The retina offers a unique “window” to study dementia due to its similar anatomical and physiological properties with the brain. In terms of vasculature, the retinal arterioles and venules, measuring 100 to 300 µm in diameter, share similar features with cerebral small vessels, such as end arterioles without anastomoses, barrier function, and auto-regulation8,9. In terms of neuronal structure, retinal ganglionic cells (RGCs) share typical properties with neurons in the central nervous system (CNS)10. The RGCs are prominently connected with the brain as they form the optic nerve and project visual signals from the retina to the lateral geniculate nuclei and the superior colliculus. The optic nerve, similar to many neuronal fibers in the CNS, is myelinated by oligodendrocytes and is ensheathed in meningeal layers. Notably, an insult to the optic nerve can result in similar responses observed in other CNS axons, such as retrograde and anterograde degeneration of the axon, scar formation, myelin destruction, secondary degeneration, and an abnormal level of neurotrophic factors and neurotransmitters11,12,13,14. The appearance of visual symptoms in some AD patients may also be explained by the robust associations between the retina and the brain15,16. As a result, it has been suggested that the retina may reflect the pathological processes of dementia in the brain and retinal imaging can be used to study dementia.
The retinal vasculature and neuronal structure can now be visualized non-invasively using retinal imaging techniques. For instance, retinal fundus photographs can be captured using fundus cameras, and characteristics of the retinal vasculature (e.g., vessel caliber, tortuosity, and fractal dimension) can then be quantified using computer-assisted analysis programs. In addition, parameters of the retinal neuronal structure (such as the thickness of ganglion cell-inner plexiform layer [GC-IPL] and retinal nerve fiber layer [RNFL]) can also be measured using optic coherence tomography (OCT) and quantified using the built-in analysis algorithms.
In view of the importance of retinal imaging to studying dementia, this protocol aims to describe a method of imaging and analyzing retinal vasculature and neuronal structure in vivo using retinal imaging techniques. This protocol also provides examples of retinal changes in subjects with dementia, and discusses technical issues and current limitations of retinal imaging.
All methods described here have been approved by a local clinical research ethics committee in Hong Kong.
Note: For simplicity, the equipment listed in the Table of Materials is used to illustrate the procedures of retinal imaging and subsequent analysis. Measurement of retinal vascular parameters is illustrated using the Singapore I Vessel Assessment program (SIVA) 17 (Version 4.0, National University of Singapore, Singapore). However, it should be noted that a different set of equipment can be adopted as the underlying principles remain similar.
1. Prepare the Subjects for Retinal Imaging
2. Measure Retinal Vascular Parameters from Fundus Photographs Using a Computer-assisted Analysis program
Figure 1: Schematic diagram showing the procedures of measuring retinal vascular parameters. (A) Obtain optic-disc-centered fundus photographs using a fundus camera. Figure 1A and Figure 2A are two fundus photographs with optimal quality. (B) Upload the fundus photographs to the cloud-based server and enter relevant study details, including the image conversion factor (ICF). Other computer-assisted analysis programs may use non-cloud-based methods to organize and store the images. (C) Open the fundus photograph in the computer-assisted analysis program. (D) Mark the location of optic disc center, and (E) prompt the software to automatically detect the rim of optic disc and place a measurement grid. (F) Construct vessel tracings based on the vessel paths, and lay vessel covers to estimate the diameters of the vessels. (G) Adjust the incorrect vessel tracings and vessel covers manually. (H) Measure a spectrum of retinal vascular parameters, including vessel calibers, tortuosity, fractal dimension and bifurcation. Step (D) to Step (F), and Step (H) can be automatically performed by some computer-assisted analysis programs. Please click here to view a larger version of this figure.
Figure 2: Fundus photographs with optimal and suboptimal quality. The image quality of a fundus photograph must be checked immediately after image acquisition, as the image quality directly affects the subsequent measurement of retinal vascular parameters. The image should be discarded if one of these artefacts is observed. These images were captured using a 50° fundus camera. Please click here to view a larger version of this figure.
Figure 3: Calculation of the image conversion factor (ICF). To calculate the ICF, randomly select a 10% sample of images from the study (Step 1). Then, measure the height of optic discs (in pixels) from the images sampled (Step 2). Calculate the ICF using the formula: ICF= 1800 µm / (Average pixel height of optic discs of the sampled images), where 1800 µm is approximately the height of a normal optic disc (Step 3). As magnification effect and image resolution differ from camera to camera, it is necessary to calculate an accurate ICF for each camera used. Please click here to view a larger version of this figure.
Figure 4: Common errors of the auto-tracing. The automatic vessel tracing is not completely accurate and manual adjustments are required to ensure the accuracy of measurement. This figure shows common errors of the auto-tracing and demonstrates optimal results after manual adjustments. (A) The optic disc center is incorrectly marked and this lead to deviation of the measurement grid, which may affect the subsequent measurements. Ideally, the innermost circle of the measurement grid should outline the optic disc rim. (B) Incomplete vessel tracing could lead to the incorrect measurement of fractal dimension, tortuosity, etc. The vessel path should be traced until the end of the vessel. If the distal part of the vessel falls outside the measurement grid, the tracing can be stopped at the outermost white circle. (C) Vessel tracings at the crossover sites are subject to a higher tendency of error and thus require special attention. Please click here to view a larger version of this figure.
Figure 5: Incorrect vessel covers. This figure shows examples of incorrect vessel covers that should be deactivated and excluded from the subsequent measurement. Vessel covers should be deactivated if they are not perpendicular to the vessels (A). In addition, Vessel covers should also be deactivated if the vessel being traced is obscured under another vessel (B), or the vessel covers cannot represent the approximate width of the vessel (C). Please click here to view a larger version of this figure.
Figure 6: Quantification of retinal vasculature. (A) Zone B (defined as 0.5-1.0 disc diameters away from the disc margin) is used to measure vessel calibers of zone B according to the Atherosclerosis Risk in Communities Study. Zone C (defined as 0.5-2.0 disc diameters away from the disc margin) is used to measure vessel calibers of zone C and a spectrum of retinal vascular network parameters (such as tortuosity, fractal dimension, and bifurcation). (B) Vessel covers are measurement lines used to estimate the retinal vessel calibers (or diameters). Incorrect vessel covers should be manually excluded from the measurement. (C) For all vessels that have their first bifurcation within zone C, the program automatically measures the branching angles (θ) of the first bifurcation. In addition, the branching coefficient is also calculated using the formula: Branching coefficient = (d12 + d22)/d02, where d0 is the trunk caliber, and d1 and d2 are the branch calibers. Please click here to view a larger version of this figure.
3. Assess the Thickness of GC-IPL and RNFL
Figure 7: Schematic diagram showing the procedures of measuring RNFL and GC-IPL thickness. Optical coherence tomography (OCT) can be used to measure thicknesses of the ganglion cell-inner plexiform layer (GC-IPL) and the retinal nerve fiber layer (RNFL). (A, B) Measure the GC-IPL and RNFL thicknesses using the built-in “macular cube” and “optic disc cube” scanning protocols respectively. (C, D) Check the image quality immediately after image acquisition. Discard the image and repeat the scan if the signal strength is smaller than 6, or motion artefacts are detected. (E, F) Then, prompt the built-in analysis program to automatically analyze the scan result and generate a report for interpretation. Please click here to view a larger version of this figure.
Figure 8: Sub-optimal results of optical coherence tomography. Common sub-optimal results of the optical coherence tomography (OCT) include (A) poor signal strength (strength value <6), and (B) motion artefacts. The scan quality should be reviewed immediately after image acquisition, and the scan should be repeated if these artefacts are encountered. Please click here to view a larger version of this figure.
Figure 9: Retinal layers used for the assessment of the retinal neuronal structure. The retinal nerve fibre layer (RNFL) is measured using the optic nerve head (ONH) algorithm, while the ganglion cell-inner plexiform layer is measured using the ganglion cell analysis (GCA) algorithm. The ONH algorithm segments the inner and outer boundary of the RNFL to measure the thickness of RNFL. The GCA algorithm detects the outer boundary of the retinal nerve fiber layer (RNFL) and the inner plexiform layer (IPL) to yield the combined thickness of the ganglion-cell layer (GCL) and the IPL. The thicknesses of GCL and the IPL are measured together, as the boundary between GCL and IPL is anatomically indistinct. However, the combined thickness of GCL and IPL (i.e. GC-IPL) is still indicative of the health of RGCs. Please click here to view a larger version of this figure.
Figure 10: An example to show the differences in retinal vasculature between a normal subject and an AD subject. When compared to the normal subject, fundus photograph of the AD subject showed narrower vessel calibers (CRAE of Zone B, 116.4 µm vs. 156.4 µm; CRVE of Zone B, 186.9 µm vs. 207.5 µm; CRAE of Zone C, 138....
This protocol describes the procedures of quantifying neuronal and vascular changes in the retina in vivo. As the retina shares similar embryological origins, anatomical features and physiological properties with the brain, these retinal changes may reflect similar changes of vasculature and neuronal structure in the brain.
As shown in Figure 10 and Table 1, the AD subject showed decreased vessel calibers when compared to the healt...
Regarding potential financial ties, the author Tien Y. Wong is a co-inventor of the Singapore I Vessel Assessment (SIVA) program used in this article.
We would like to express our appreciation to the School of Computing, National University of Singapore for technical support and the Health and Medical Research Fund (04153506), Hong Kong for funding support.
Name | Company | Catalog Number | Comments |
Non-mydriatic Retinal Camera | Topcon, Inc, Tokyo, Japan | TRC 50DX | N/A |
Singapore I Vessel Assessment Program | National University of Singapore | Version 4.0 | N/A |
CIRRUS HD-OCT | Carl Zeiss Meditec, Inc, Dublin, CA | Model 4000 | N/A |
Mydriatic Agents | N/A | N/A | Prepared from 1% tropicamide and 2.5% phenylephrine hydrochloride |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone