Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a protocol to detect the adulteration of diesel with kerosene using test strips coated with a fluorescent viscosity probe together with a smartphone-based analysis system.
Three fluorescent molecular rotors of 4-dimethylamino-4-nitrostilbene (4-DNS) were investigated for their potential use as viscosity probes to indicate the content of kerosene in diesel/kerosene blends, a wide-spread activity to adulterate fuel. In solvents with low viscosity, the dyes rapidly deactivate via a so-called twisted intramolecular charge transfer state, efficiently quenching the fluorescence. Measurements of diesel/kerosene blends revealed a good linear correlation between the decrease in fluorescence and the increase of the fraction of the less viscous kerosene in diesel/kerosene blends. Immobilization of the hydroxy derivative 4-DNS-OH in cellulose paper yielded test strips that preserve the fluorescent indicator's behavior. Combination of the strips with a reader based on a smartphone and a controlling app allowed to create a simple field test. The method can reliably detect the presence of kerosene in diesel from 7 to 100%, outperforming present standard methods for diesel adulteration.
Fuel adulteration is a serious problem in many different parts of the world, simply due to the enormous relevance of fuel as an energy source. Running engines on adulterated fuel reduces their performance, leads to earlier engine failure and entails environmental pollution1. Increased SOx emissions occur if diesel is adulterated with kerosene that usually contains a higher amount of sulfur2,3. Although the problem exists for decades, sustainable fuel management that uncovers such criminal activity at its point of origin is still rare, because simple and reliable tests for fuel adulteration are largely lacking4. Despite substantial progress in laboratory-based mineral oil analysis in the past decades5,6,7, approaches to on-site measurements are still scarce. Various methods for the use outside of the laboratory have recently been devised, using fiber optics8, field-effect transistors9 or mechano-chromic materials10. Although they overcome some of the drawbacks of conventional methods, robust, user-friendly and portable methods are still lacking largely. Fluorescent viscosity probes based on molecular rotors are an interesting alternative11,12, because mineral oils are comprised of a great variety of hydrocarbons that differ in chain length and cyclicity, being often reflected in different viscosities. Because fuels are complex mixtures without specific lead compounds to act as tracers, the measurement of the change of a macroscopic property like viscosity or polarity seems very promising. The latter can be addressed by fluorescent molecular rotors for which the fluorescence quantum yields depend on environmental viscosity. After photoexcitation, deactivation commonly involves a twisted intramolecular charge transfer (TICT) state, the population of which is determined by the viscosity of its surrounding microenvironment13. Highly viscous solvents hinder molecular rotors to adopt a TICT state, entailing bright emission. In low-viscous solvents, the rotor can much better access the TICT state, accelerating non-radiative decay and thus quenched fluorescence. The addition of kerosene, with a viscosity of 1.64 mm2∙s-1 at 27 °C, to diesel, with respective viscosities of 1.3-2.4, 1.9-4.1, 2.0-4.5 or 5.5-24.0 mm2∙s -1 at 40 °C for grades 1D, 2D, EN 950 and 4D14,15,16, reduces the kinematic viscosity of the mixture and potentially leads to a proportional quenching of the fluorescence of a molecular rotor probe. The family of 4-dimethylamino-4-nitrostilbenes (4-DNS) seemed most promising to us because of their strong fluorescence variation over a kinematic viscosity range of 0.74-70.6 mm2∙s -1. This range matches well with the known values of kerosene and diesel.
We therefore explored the ability of 4DNS, 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4DNSOH) and (E)-4-(2-(ethyl(4-(4-nitrostyryl)phenyl)amino)ethoxy)-4-oxobutanoic acid (4DNSCOOH) to indicate the viscosity of diesel-kerosene mixtures through their fluorescence, depending on intramolecular rotation and finally yielding a rapid test for diesel adulteration with kerosene. The disposable test is easy to use, precise, reliable, cost-effective and dimensionally small. The adsorption of the probes onto the filter paper as a solid support was investigated and the analysis was accomplished with an embedded smartphone-based fluorescence reader. Today, ubiquitously available smartphones are equipped with high-quality cameras, rendering the detection of optical changes such as color and fluorescence straightforward, and paving the way for powerful on-site analyses. We demonstrate here that the measurement of the emission of fluorescent probes adsorbed on paper strips with a smartphone can be used for fraud detection on combustion fuels in a reliable manner17.
1. Fluorescent Dyes (Figure 1A)
2. Synthesis of the Reference Dye
Note: The synthetic procedure of 8-(phenyl)-1,3,5,7-tetramethyl-2,6-diethyl-4,4-difluoro-4 bora-3a,4a-diaza-s-indacene was adopted from Coskun et al.18.
3. TEST STRIP FABRICATION, METHOD 1.
4. Test Strip Fabrication, Method 2.
5. Sample Pre-Treatment.
6. Smartphone Reader Implementation
Note: An Android based smartphone with a centered front camera was used as the core of the smartphone measurement system. All the necessary optical elements and 3D-printed accessory were custom-made for this device. However, any other smartphone with a CMOS (Complementary Metal Oxide Semiconductor) camera can be used.19,20
7. Sample Analysis Using the Smartphone-Based Detector
Note: Analyses were carried out by running a Java app(lication) for Android that finally displayed the adulteration level on the screen. Without the app, pictures can be taken, exported to a computer and analyzed with a standard image analysis software.
The three structures of the two commercial dyes 4-DNS and 4-DNS-OH and the synthesized dye 4-DNS-COOH contain a stilbene core element substituted with a donor (-NR2) and an acceptor (-NO2) group at both ends, the central double bond constituting the hinge of the so called 'molecular rotor' (Figure 1A). The structures differ in amino group substitution pattern with short alkyl groups for 4-DNS, two slightly longer groups including...
A fluorescent probe, based on a molecular rotor dye that is sensitive to viscosities in the range of those measured for diesel and its different blends with kerosene, was used to obtain simple and efficient test strips for the detection of diesel fuel adulteration. The emission intensity of 4-DNS at 550 nm in various diesel/kerosene blends correlates with a reduction in viscosity when the proportion of kerosene increases. At a temperature of 24 °C, a nonlinear fluorescence quenching of up to 55% was observed for up ...
The authors have nothing to disclose.
The authors would like to acknowledge the BAM for funding through the focus area Analytical Sciences: https://www.bam.de/Navigation/EN/Topics/Analytical-Sciences/Rapid-Oil-Test/rapid-oil-test.html.
Name | Company | Catalog Number | Comments |
4-dimethylamino-4-nitrostilbene (CAS Number: 2844-15-7) | Sigma-Aldrich | 39255 | 4-DNS Dye |
2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (CAS Number: 122258-56-4) | Sigma-Aldrich | 518565 | 4-DNS-OH Dye |
Whatman qualitative filter paper, Grade 1 | Sigma-Aldrich | Z274852 | Test strips support |
Whatman application specific filter, activated carbon loaded paper, Grade 72 | Sigma-Aldrich | WHA1872047 | Fuel pre-treatment filters |
Pall reusable in-line filter holders stainless steel, diam. 47 mm | Sigma-Aldrich | Z268453 | Holder pre-treatment filters |
(3-Aminopropyl)triethoxysilane | Sigma-Aldrich | 919-30-2 | APTES |
4-(Dimethylamino)pyridine | Sigma-Aldrich | 1122-58-3 | DMAP |
Succinic anhydride | Sigma-Aldrich | 108-30-5 | |
Triethylamine | Sigma-Aldrich | 121-44-8 | Et3N |
N,N'-dicyclohexylcarbodiimide | Sigma-Aldrich | 538-75-0 | DCC |
Stuart Tube Rotators | Cole-Parmer | SB3 | Rotator |
FreeCAD | freecadweb.org | - | Freeware - 3D design |
Ultimaker Cura | Ultimaker | - | Freeware - 3D printing |
Android Studio | - | Freeware - App programming | |
Renkforce SuperSoft OTG-Mirror Micro-USB Cable 0,15 m | Conrad.de | 1359890 - 62 | Smartphone setup electronic part |
Black Cord Switch 1 x Off / On | Conrad.de | 1371835 - 62 | Smartphone setup electronic part |
Carbon Film Resistor 100 Ω | Conrad.de | 1417639 - 62 | Smartphone setup electronic part |
492 nm blocking edge BrightLine short-pass filter | Semrock | FF01-492/SP-25 | Filter excitation |
550/49 nm BrightLine single-band bandpass filter | Semrock | FF01-550/49-25 | Filter emission |
Ø1/2" Unmounted N-BK7 Ground Glass Diffuser, 220 Grit | Thorlabs | DG05-220 | Diffuser excitation |
LED 465 nm, 9 cd, 20 mA, ±15°, 5 mm clear epoxy | Roithner | RLS-B465 | LED excitation |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone