Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes a method to record the descending electrical activity of the Drosophila melanogaster central nervous system to enable the cost-efficient and convenient testing of pharmacological agents, genetic mutations of neural proteins, and/or the role of unexplored physiological pathways.
The majority of the currently available insecticides target the nervous system and genetic mutations of invertebrate neural proteins oftentimes yield deleterious consequences, yet the current methods for recording nervous system activity of an individual animal is costly and laborious. This suction electrode preparation of the third-instar larval central nervous system of Drosophila melanogaster, is a tractable system for testing the physiological effects of neuroactive agents, determining the physiological role of various neural pathways to CNS activity, as well as the influence of genetic mutations to neural function. This ex vivo preparation requires only moderate dissecting skill and electrophysiological expertise to generate reproducible recordings of insect neuronal activity. A wide variety of chemical modulators, including peptides, can then be applied directly to the nervous system in solution with the physiological saline to measure the influence on the CNS activity. Further, genetic technologies, such as the GAL4/UAS system, can be applied independently or in tandem with pharmacological agents to determine the role of specific ion channels, transporters, or receptors to arthropod CNS function. In this context, the assays described herein are of significant interest to insecticide toxicologists, insect physiologists, and developmental biologists for which D. melanogaster is an established model organism. The goal of this protocol is to describe an electrophysiological method to enable the measurement of electrogenesis of the central nervous system in the model insect, Drosophila melanogaster, which is useful for testing a diversity of scientific hypotheses.
The overall goal of this approach is to enable researchers to quickly measure the electrogenesis of the central nervous system (CNS) in the model insect, Drosophila melanogaster. This method is reliable, quick, and cost-efficient to perform physiological and toxicological experimentation. The CNS is essential for life and therefore, the physiological pathways critical for proper neural function have been explored extensively in an effort to understand or modify neural function. Characterization of the signaling pathways within the arthropod CNS has enabled the discovery of several chemical classes of insecticides that disrupt invertebrate neural function to induce mortality while limiting off-target consequences. Thus, the ability to measure the neural activity of insects is of significant interest to the field of insect toxicology and physiology since the nervous system is the target tissue of the majority of deployed insecticides1. Yet, continued growth of fundamental and applied knowledge regarding the insect nervous system requires advanced neurophysiological techniques that are limited in feasibility, since current techniques are labor intensive and require a high expense, insect neural cell lines are limited, and/or there is limited access to the central synapses of most arthropods. Currently, characterization of most insect neural proteins requires the target to be cloned and heterologously expressed for subsequent drug discovery and electrophysiological recordings, as was described for insect inward rectifier potassium channels2, insect ryanodine receptor3, mosquito voltage-sensitive K+ channels4, and others. To mitigate the requirement for heterologous expression and the potential for low functional expression, Bloomquist and colleagues aimed to induce a neuronal phenotype in cultured Spodoptera frugiperda (Sf21) cells as a novel method for insecticide discovery5,6. These methods provide a valid approach for the development of new chemistry, yet they oftentimes create an insurmountable bottleneck for the characterization of pharmacological agents, identifying mechanisms of insecticide resistance, and characterization of fundamental physiological principles. Here, we describe an ex vivo method that enables the recording of electrical activity from a model insect that has malleable genetics7,8,9 and known expression patterns of neural complexes10,11,12 to enable the characterization of resistance mechanisms at the level of the nerve, the mode of action of newly developed drugs, and other toxicological studies.
The fruit fly, D. melanogaster, is a common model organism for defining insect neural systems or insecticide mechanism of action and has been established as a well-suited model organism for the study of toxicological13, pharmacological14,15, neurophysiological16, and pathophysiological17,18,19,20 processes of vertebrates. D.melanogaster is a holometabolous insect that performs complete metamorphosis, including a larval and pupal stage before reaching the reproductive adult stage. Throughout the developmental process, the nervous system undergoes significant remodeling at different life stages, but the larval CNS will be the focus of this methodology. The fully developed larval CNS is anatomically simple with thoracic and abdominal segments that are fused and form the ventral ganglion, which represents an array of repeated and almost identical neuromeric units21,22. Descending motor nerves originate from the caudal end of the subesophageal ganglia and descend to innervate body wall muscles and visceral organs of the larvae. Figure 1 describes the gross anatomy of the larval Drosophila CNS.
The Drosophila blood-brain barrier (BBB) develops at the end of embryogenesis and is formed by subperineurial glial cells (SPG)21. The SPG cells form numerous filopodia-like processes that spread out to establish a contiguous, very flat, endothelial-like sheet that covers the entire Drosophila CNS23. The Drosophila BBB has similarities to the vertebrate BBB, which includes preserving the homeostasis of the neural microenvironment by controlling the entry of nutrients and xenobiotics into the CNS21. This is a prerequisite for reliable neural transmission and function, yet the protection of the CNS by the BBB restricts the permeation of synthetic drugs, most peptides, and other xenobiotics24,25, which introduces potential problems when characterizing potencies of small-molecule modulators. The method uses a simple transection to disrupt this barrier and provide ready pharmacological access to the central synapses.
The greatest strength of the described methodology is the simplicity, reproducibility, and relatively high-throughput capacity inherent to this system. The protocol is relatively easy to master, the setup requires little space, and only an initial financial input is necessary which is reduced to reagents and consumables. Further, the described method is completely amendable to record the central descending nerve activity of the house fly, Musca domestica26.
1. Equipment and Materials
2. Equipment and Software Configuration
NOTE: The setup of the extracellular recording is briefly described below.
3. Dissect and Prepare the Larval Drosophila CNS
NOTE: Methods for larval CNS dissection are clearly illustrated in Hafer and Schedl27, but these previously published methods reduce the length of the descending neurons that are important for measuring spike frequency. Here, an additional method is outlined to excise the larval CNS that maintains long, intact descending neurons.
4. Extracellular Recording of Drosophila CNS.
Spontaneous activity of the descending peripheral nerves arising from the Drosophila central nervous system can be recorded using extracellular suction electrodes with consistent reproducibility. Spontaneous activity of the excised and transected Drosophila CNS produces a cyclical pattern of bursting with 1-2 s of firing with approximately 1 s of near quiescent activity. For example, the CNS is near quiescent (1-2 Hz) for 0.5-1 s, followed by a burst (100-400 Hz) for app...
The details provided in the associated video and text have provided key steps in order to record the activity and spike discharge frequency of the Drosophila CNS ex vivo. The dissection efficacy is the most critical aspect of the method because short or few descending neurons will reduce the baseline firing rate that will result in large variances between replicates. However, once the dissection technique has been mastered, the data collected with this assay are highly reproducible and amendable for a w...
The authors have nothing to disclose.
We would like to thank Ms. Rui Chen for the dissection and images of the Drosophila CNS shown in the figures.
Name | Company | Catalog Number | Comments |
Drosophila melanogaster (strain OR) | Bloomington Drosophila Stock Center | 2376 | |
Vibration isolation table | Kinetic Systems | 9200 series | |
Faraday Cage | Kinetic Systems | N/A | |
Dissecting Microscope on a Boom | Nikon | SMZ800N | Multiple scopes can be used; boom stand is critical |
AC/DC differential amplifier | ADInstruments | AM3000H | The model 1700 can be used instead of the model 3000 |
audio monitor | ADInstruments | AM3300 | |
Hum Bug Noise Eliminator | A-M Systems | 726300 | |
Data Acquisition System (PowerLab) | ADInstruments | PL3504 | Multiple PowerLab models can be used. |
Lab Chart Pro Software | ADInstruments | N/A - Online Download | |
Fiber Optic Lights | Edmund Optics | 89-740 | Different light sources can be used, but fiber optics are the most adaptable |
Micromanipulator | World Precision Instruments | M325 | |
Microelectrode Holder | World Precision Instruments | MEH715 | Different models are acceptable |
BNC cables | World Precision Instruments | multiple based on size | |
Glass Capillaries | World Precision Instruments | PG52151-4 | |
Microelectrode Puller | Sutter Instruments | P-1000 | Also can use Narashige PC-100 |
Black Wax | Carolina Biological Supply | 974228 | |
Non-coated insect pins, size #2 | Bioquip | 1208S2 | |
Fince Forceps | Fine Science Tools | 11254-20 | |
Vannas Spring Scissors | Fine Science Tools | 15000-03 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone