Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
We present a detailed protocol to generate a murine xenograft model of venous malformation. This model is based on the subcutaneous injection of patient-derived endothelial cells containing hyper-activating TIE2 and/or PIK3CA gene mutations. Xenograft lesions closely recapitulate the histopathological features of VM patient tissue.
Venous malformation (VM) is a vascular anomaly that arises from impaired development of the venous network resulting in dilated and often dysfunctional veins. The purpose of this article is to carefully describe the establishment of a murine xenograft model that mimics human VM and is able to reflect patient heterogeneity. Hyper-activating non-inherited (somatic) TEK (TIE2) and PIK3CA mutations in endothelial cells (EC) have been identified as the main drivers of pathological vessel enlargement in VM. The following protocol describes the isolation, purification and expansion of patient-derived EC expressing mutant TIE2 and/or PIK3CA. These EC are injected subcutaneously into the back of immunodeficient athymic mice to generate ectatic vascular channels. Lesions generated with TIE2 or PIK3CA-mutant EC are visibly vascularized within 7‒9 days of injection and recapitulate histopathological features of VM patient tissue. This VM xenograft model provides a reliable platform to investigate the cellular and molecular mechanisms driving VM formation and expansion. In addition, this model will be instrumental for translational studies testing the efficacy of novel drug candidates in preventing the abnormal vessel enlargement seen in human VM.
Defects in the development of the vasculature are the underlying cause of many diseases including venous malformation (VM). VM is a congenital disease characterized by abnormal morphogenesis and expansion of veins1. Important studies on VM tissue and endothelial cells (EC) have identified gain-of-function mutations in two genes: TEK, which encodes the tyrosine kinase receptor TIE2, and PIK3CA, which encodes the p110α (catalytic subunit) isoform of PI3-kinase (PI3K)2,3,4,5. These somatic mutations result in ligand-independent hyper-activation of key angiogenic/growth signaling pathways, including PI3K/AKT, thereby resulting in dilated ectatic veins3. Despite these important genetic discoveries, the subsequent cellular and molecular mechanisms triggering abnormal angiogenesis and the formation of enlarged vascular channels are still not fully understood.
During normal and pathological angiogenesis, new vessels sprout from a pre-existing vascular network and EC undergo a sequence of important cellular processes including proliferation, migration, extracellular matrix (ECM) remodeling and lumen formation6. Two- and three- dimensional (2D/3D) in vitro cultures of EC are important tools to investigate each of these cellular properties individually. Nevertheless, there is a clear demand for a mouse model recapitulating pathological vessel enlargement within the host microenvironment while providing an efficient platform for preclinical evaluation of targeted drugs for translational research.
Up to date, a transgenic murine model of VM associated with TIE2 gain-of-function mutations has not been reported. Current transgenic VM mouse models rely on the ubiquitous or tissue-restricted expression of the activating mutation PIK3CA p.H1047R3,5. These transgenic animals provide significant insight into whole-body or tissue-specific effects of this hotspot PIK3CA mutation. The limitation of these models is the formation of a highly pathological vascular network resulting in early lethality. Thus, these mouse models do not fully reflect the sporadic occurrence of mutational events and localized nature of VM pathology.
On the contrary, patient-derived xenograft models are based on the transplantation or injection of pathological tissue or cells derived from patients into immunodeficient mice7. Xenograft models are a powerful tool to broaden knowledge about disease development and discovery of novel therapeutic agents8. In addition, using patient-derived cells allows scientists to recapitulate mutation heterogeneity to study the spectrum of patient phenotypes.
Here, we describe a protocol where patient-derived VM EC which express a mutant constitutively-active form of TIE2 and/or PIK3CA are injected subcutaneously in the back of athymic nude mice. Injected vascular cells are suspended in an ECM framework in order to promote angiogenesis as described in previous vascular xenograft models9,10,11. These VM EC undergo significant morphogenesis and generate enlarged, perfused pathological vessels in the absence of supporting cells. The described xenograft model of VM provides an efficient platform for preclinical evaluation of targeted drugs for their ability to inhibit uncontrolled lumen expansion.
Patient tissue samples were obtained from participants after informed consent from the Collection and Repository of Tissue Samples and Data from Patients with Tumors and Vascular Anomalies under an approved Institutional Review Board (IRB) per institutional policies at Cincinnati Children’s Hospital Medical Center (CCHMC), Cancer and Blood Disease Institute and with approval of the Committee on Clinical Investigation. All animal procedures described below have been reviewed and approved by the CCHMC Institutional Animal Care and Use Committee.
1. Preparation of materials and stock solutions
2. Isolation of endothelial cells from VM patient tissue
3. Endothelial cell selection and expansion
4. VM patient-derived xenograft protocol
NOTE: In this protocol we use 5‒6 week old, male immunodeficient, athymic nude Foxn1nu mice.
All animal procedures must be approved by the Institutional Animal Care and Use Committee (IACUC).
5. Tissue collection and processing
6. Lesion sectioning
7. Hematoxylin and Eosin (H&E)
8. Immunohistochemistry
9. Analysis of human-derived Vascular Channels
NOTE: Vascularity of VM lesions is quantified by measuring vascular area and vascular density. Only UEA-I positive, human-derived vascular channels are considered for quantification.
This protocol describes the process of generating a murine xenograft model of VM based on the subcutaneous injection of patient-derived EC into the back of immunodeficient nude mice. Endothelial cell colonies can be harvested within 4 weeks after initial cell isolation from VM tissue or lesional blood (Figure 1A,B). The day after injection, the xenograft lesion plug covers a surface area of approximately 80‒100 mm2. In our hands, lesion plugs with TIE2/PIK3CA-mutant EC are visibly vascul...
Here, we describe a method to generate a patient-derived xenograft model of VM. This murine model presents an excellent system that allows researchers to gain a deeper understanding of pathological lumen enlargement and will be instrumental in developing more effective and targeted therapies for the treatment of VM. This can be easily adapted to investigate other types of vascular anomalies such as capillary lymphatic venous malformation16. There are several steps that are crucial for the successf...
The authors have no conflicts-of-interests to disclose.
The authors would like to thank Nora Lakes for proofreading. Research reported in this manuscript was supported by the National Heart, Lung, and Blood Institute, under Award Number R01 HL117952 (E.B.), part of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Name | Company | Catalog Number | Comments |
Athymic nude mice, (Foxn1-nu); 5-6 weeks, males | Envigo | 069(nu)/070(nu/+) | Subcutaneous injection |
Biotinylated Ulex europeaus Agglutinin-I (UEA-I) | Vector Laboratories | B-1065 | Histological anlaysis |
Bottle top filter (500 ml; 0.2 µM) | Thermo Fisher | 974106 | Cell culture |
Bovine Serum Albumin (BSA) | BSA | A7906-50MG | Cell culture; Histological analysis |
Calcium cloride dihydrate (CaCl2.2H2O) | Sigma | C7902-500G | Cell culture |
Caliper | Electron Microscopy Sciences | 50996491 | Lesion plug measurment |
CD31-conjugated magnetic beads (Dynabeads) | Life Technologies | 11155D | EC separation |
Cell strainer (100 μM) | Greiner | 542000 | Cell culture |
Collagenase A | Roche | 10103578001 | Cell culture |
Conical Tube; polypropylene (15 mL) | Greiner | 07 000 241 | Cell culture |
Conical Tube; polypropylene (50 mL) | Greiner | 07 000 239 | Cell culture |
Coplin staining jar | Ted Pella | 21029 | Histological anlaysis |
Coverglass (50 X 22 mm) | Fisher Scientific | 12545E | Histological anlaysis |
DAB: 3,3'Diaminobenzidine Reagent (ImmPACT DAB) | Vector Laboratories | SK-4105 | Histological anlaysis |
Dulbecco's Modification of Eagle's Medium (DMEM) | Corning | 10-027-CV | Cell culture |
DynaMag-2 | Life Technologies | 12321D | EC separation |
Ear punch | VWR | 10806-286 | Subcutaneous injection |
EDTA (0.5M, pH 8.0) | Life Technologies | 15575-020 | Histological anlaysis |
Endothelial Cell Growth Medium-2 (EGM2) Bulletkit (basal medium and supplements) | Lonza | CC-3162 | Cell culture |
Eosin Y (alcohol-based) | Thermo Scientific | 71211 | Histological anlaysis |
Ethanol | Decon Labs | 2716 | Histological anlaysis |
Fetal Bovine Serum (FBS) , HyClone | GE Healthcare | SH30910.03 | Cell culture |
Filter tip 1,250 μL | MidSci | AV1250-H | Multiple steps |
Filter tip 20 μL | VWR | 10017-064 | Multiple steps |
Filter tip 200 μL | VWR | 10017-068 | Multiple steps |
Formalin buffered solution (10%) | Sigma | F04586 | Lesion plug dissection |
Hemacytometer (INCYTO; Disposable) | SKC FILMS | DHCN015 | Cell culture |
Hematoxylin | Vector Hematoxylin | H-3401 | Histological anlaysis |
Human plasma fibronectin purified protein (1mg/mL) | Sigma | FC010-10MG | Cell culture |
Hydrogen Peroxide solution (30% w/w) | Sigma | H1009 | Histological anlaysis |
ImageJ Software | Analysis | ||
Isoflurane, USP | Akorn Animal Health | 59399-106-01 | Subcutaneous injection |
magnesium sulfate heptahydrate (MgSO4.7H2O) | Sigma | M1880-500G | Cell culture |
Basement Membrane Matrix (Phenol Red-Free; LDEV-free) | Corning | 356237 | Subcutaneous injection |
Microcentrifuge tube (1.5 mL) | VWR | 87003-294 | EC separation |
Microscope Slide Superfrost (75mm X 25mm) | Fisher Scientific | 1255015-CS | Histological anlaysis |
Needles, 26G x 5/8 inch Sub-Q sterile needles | Becton Dickinson (BD) | BD305115 | Subcutaneous injection |
Normal horse serum | Vector Laboratories | S-2000 | Histological anlaysis |
Penicillin-Streptomycin-L-Glutamine (100X) | Corning | 30-009-CI | Cell culture |
Permanent mounting medium (VectaMount) | Vector Laboratories | H-5000 | Histological anlaysis |
Pestle Size C, Plain | Thomas Scientific | 3431F55 | EC isolation |
Phosphate Buffered Saline (PBS) | Fisher Scientific | BP3994 | Cell culture |
Scale | VWR | 65500-202 | Subcutaneous injection |
Serological pipettes (10 ml) | VWR | 89130-898 | Cell culture |
Serological pipettes (5ml) | VWR | 89130-896 | Cell culture |
Sodium carbonate (Na2CO3) | Sigma | 223530 | Cell culture |
Streptavidin, Horseradish Peroxidase, Concentrate, for IHC | Vector Laboratories | SA-5004 | Cell culture |
Syringe (60ml) | BD Biosciences | 309653 | Cel culture |
SYRINGE FILTER (0.2 µM) | Corning | 431219 | Cell culture |
Syringes (1 mL with Luer Lock) | Becton Dickinson (BD) | BD-309628 | Subcutaneous injection |
Tissue culture-treated plate (100 X 20 mm) | Greiner | 664160 | Cell culture |
Tissue culture-treated plate (145X20 mm) | Greiner | 639160 | Cell culture |
Tissue culture-treated plates (60 X 15) mm | Eppendorf | 30701119 | Cell culture |
Tris-base (Trizma base) | Sigma | T6066 | Histological anlaysis |
Trypan Blue Solution (0.4 %) | Life Technologies | 15250061 | Cell culture |
Trypsin EDTA, 1X (0.05% Trypsin/0.53mM EDTA) | Corning | 25-052-Cl | Cell culture |
Tween-20 | Biorad | 170-6531 | Histological anlaysis |
Wheaton bottle | VWR | 16159-798 | Cell culture |
Xylenes | Fisher Scientific | X3P-1GAL | Histological anlaysis |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone