Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
A dual raster-scanning photoacoustic imager was designed, which integrated wide-field imaging and real-time imaging.
Imaging of vascular networks on small animals has played an important role in basic biomedical research. Photoacoustic imaging technology has great potential for application in the imageology of small animals. The wide-field photoacoustic imaging of small animals can provide images with high spatiotemporal resolution, deep penetration, and multiple contrasts. Also, the real-time photoacoustic imaging system is desirable to observe the hemodynamic activities of small-animal vasculature, which can be used to research the dynamic monitoring of small-animal physiological features. Here, a dual-raster-scanning photoacoustic imager is presented, featuring a switchable double-mode imaging function. The wide-field imaging is driven by a two-dimensional motorized translation stage, while the real-time imaging is realized with galvanometers. By setting different parameters and imaging modes, in vivo visualization of small-animal vascular network can be performed. The real-time imaging can be used to observe pulse change and blood flow change of drug-induced, etc. The wide-field imaging can be used to track the growth change of tumor vasculature. These are easy to be adopted in various areas of basic biomedicine research.
In the basic biomedical field, small animals can simulate human physiological function. Therefore, small-animal imaging plays an important role in guiding the research of human homologous diseases and seeking effective treatment1. Photoacoustic imaging (PAI) is a non-invasive imaging technique combining the advantages of optical imaging and ultrasound imaging2. Photoacoustic microscopy (PAM) is a valuable imaging method for basic research of small animal3. PAM can easily obtain high-resolution, deep-penetration, high-specificity and high-contrast images based on optical excitation and ultrasound detection4.
A pulse laser with a specific wavelength is absorbed by endogenous chromophores of tissues. Subsequently, the temperature of the tissue rises, which results in the production of photo-induced ultrasonic waves. The ultrasonic waves can be detected by an ultrasonic transducer. After signal acquisition and image reconstruction, the spatial distribution of the absorber can be obtained5. On the one hand, the visualization of whole-organ vascular network requires a wide field of view. The process of wide-field scanning usually takes a long time to ensure high-resolution6,7,8. On the other hand, observing the hemodynamic activities of small animals requires fast real-time imaging. The real-time imaging is beneficial to study the vital signs of small animals in real time9,10,11. The field of view of real-time imaging is usually sufficiently small to ensure a high update rate. Thus, there is often a tradeoff between achieving a wide field of view and real-time imaging. Previously, two different systems were used for wide-field imaging or real-time imaging, separately.
This work reports a dual raster-scanning photoacoustic imager (DRS-PAI), which integrated wide-field imaging based on a two-dimensional motorized translation stage and real-time imaging based on a two-axis galvanometer scanner. The wide-field imaging mode (WIM) is performed to show vascular morphology. For the real-time imaging mode (RIM), there are currently two functions. First, RIM can provide real-time B-scan images. By measuring the displacement of vasculature along the depth direction, the characteristics of respiration or pulse can be revealed. Second, the RIM can quantitatively measure the specific area in the WIM image. By providing comparable images of local WIM regions, the details of the local change can be accurately revealed. The system designs a flexible transition between wide-field imaging of vascular visualization and real-time imaging of the local dynamic. The system is desirable in basic biomedical research where there is a need for small-animal imaging.
All animal experiments were performed in compliance with guidelines provided by the institutional animal care and use committee of South China Normal University, Guangzhou, China.
1. System Setup
2. System alignment
3. Animal experiment
The schematic of the DRS-PAI is shown in Figure 1. The system allows flexible and repeatable switching between WIM with RIM. The acquired PA signal is processed quickly to generate PA B-Scan and MAP images. The CCD camera can provide photographs of samples.
All components of the DRS-PAI are integrated and assembled in an imager setup (Figure 2), making it easy to assemble and operate. In the WIM, continuous raster scanning of a two-di...
Here we presented a dual raster-scanning photoacoustic small-animal imager for noninvasive vascular visualization which was designed and developed to capture the structure of the vasculature and the related dynamic change of blood. The advantage of DRS-PAI is that it integrates the WIM and the RIM into one system, which makes it easier to study vascular dynamic and vascular network structure of small animals. The system can provide high-resolution wide-field vascular visualization and real-time blood dynamics.
All animal experiments were performed according to the approved guidelines and regulations of the Institutional Animal Care and Use Committee. The authors have no relevant financial interests in the manuscript and no other potential conflicts of interest to disclose.
The authors would like acknowledge the financial support from National Natural Science Foundation of China (61822505; 11774101; 61627827; 81630046), The Science and Technology Planning Project of Guangdong Province, China (2015B020233016), and The Science and Technology Program of Guangzhou (No. 2019020001).
Name | Company | Catalog Number | Comments |
12 bit multi-purpose digitizer | Spectrum | M3i.3221 | Data acquisition card |
A-line collected program | National Instrument | LabVIEW | User-defined program |
Amplifier | RF Bay | LNA-650 | Amplifier |
Depilatory Cream | Veet | 33-II | Animal depilatory |
Fiberport Coupler | Thorlab | PAF-X-7-A | Fiber Coupler |
Field Programmable Gate Array | Altera | Cyclone IV | Trigger Control |
Fixed Focus Collomation Packages | Thorlabs | F240FC-532 | Fiber Collimator |
Foused ultrasonic transducer | Self-made | ||
Graphics Processing Unit | NVIDIA | GeForce GTX 1060 | Processing data |
Holder | Self-made | Animal fixation | |
Laser control program | National Instrument | LabVIEW | User-defined program |
Mice | Guangdong Medical Laboratory Animal Center | BALB/c | Animal Model |
Microscope camera | Mshot | MS60 | CCD camera |
Microscope Objective | Daheng Optics | GCO-2111 | Objective Lens |
Mirror | Daheng Optics | GCC-1011 | Moveable/Fixed Mirror |
Moving Magnet Capacitive Detector Galvanometer Scanner | Century Sunny | S8107 | real-time scanner |
Mshot image analysis system | Mshot | Display software | |
Normal Saline | CR DOUBLE-CRANE | H34023609 | Normal Saline |
Ophthalmic Scissors | SUJIE | Scalp Remove | |
Planar ultrasonic transducer | Self-made | ||
Plastic Wrap | HJSJLSL | Polyethylene Membrane | |
Program Control Software | National Instrument | LabVIEW | User-defined Program |
Pulsed Q-swithched Laser | Laser-export | DTL-314QT | 532-nm pulse Laser |
Real-time imaging program | National Instrument | LabVIEW | User-defined program |
Ring-shaped white LED | Self-made | ||
Shaver | Codos | CP-9200 | Animal Shaver |
Single-Mode Fibers | Nufern | 460-HP | Single-mode fiber |
Surgical Blade | SUJIE | 11 | Blade |
Surgical Scalpel | SUJIE | 7 | Scalp Remove |
Translation Stage | Jiancheng Optics | LS2-25T | wide-field scanning stage |
Ultrasonic Transducer | Self-made | ||
Ultrasound gel | GUANGGONG PAI | ZC4252418 | Acoustic Coupling |
Urethane | Tokyo Chemical Industry | C0028 | Animal Anestheized |
Water tank | Self-made | ||
Wide-field imaging program | National Instrument | LabVIEW | User-defined program |
XY Translator Mount | Self-made |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone