Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

We describe a clinical algorithm, based on decades of front-line experience of diagnosis and surgical treatment of human Brucellar spondylodiscitis in the largest medical center of the China's Xinjiang Pastoral Area.

Streszczenie

Brucellar spondylodiscitis (BS) is the most prevalent and significant osteoarticular presentation of human Brucellosis, which is commonly manifested in pastoral communities. It is difficult to differentially diagnose and usually leads to irreversible neurologic deficits and spinal deformities. The initial diagnosis of BS is based on clinical findings and radiographic assessments, and the confirmed diagnosis should be established by the isolation of Brucella species from the blood and/or the standard tube agglutination test. Differential diagnosis of multifocal BS from either degenerative disc diseases or tuberculosis is especially highlighted. The surgical approach, either endoscopic or open, is demonstrated in detail, accompanied by radiographic evidence of structural compression or severe instability. Further, the crucial surgical steps, including single-stage transforaminal decompression, debridement, interbody fusion, and internal fixation, are explained. Moreover, perioperative care and postoperative rehabilitation are also addressed. Taken together, this clinical algorithm presents a practical guide that has yielded substantially satisfactory outcomes in the past decades, which can also be introduced for large-scale application to manage human BS, especially in endemic regions.

Wprowadzenie

With more than half a million new cases annually, human Brucellosis has become a public health concern and remains an enormous burden worldwide1,2,3,4. BS, as the most common and severe osteoarticular manifestation of human Brucellosis, involves multiple structures including vertebral bodies, intervertebral disc, and paraspinal structures5,6. It occurs frequently in the lumbosacral zone and needs to be differentiated from other infectious diseases because of its nonspecific clinical characteristics7,8. Despite the significant advances in research over the past decades, accurate and timely diagnosis of BS is still a challenge for clinicians due to its late-onset radiological findings, slow growth rate in blood cultures, and the complexity of its serodiagnosis9. Therefore, human BS remains clinically underdiagnosed and underreported. Although the past decades have seen increasingly rapid advances in the introduction and popularization of several therapeutic guidelines, there is still no consensus for an optimal management modality10. Frequent relapses, treatment failure, and sequelae are reported constantly11.

Of note, BS can be severely debilitating and disabling even if it is rarely fatal. If it is not treated appropriately, possible serious sequelae might be induced including persistent back pain, neurological deficiency, and even kyphotic deformity12,13. Antibiotic therapy is the core in the treatment of BS and yields generally promising outcomes9. However, certain patients may require surgical treatment if neurological dysfunction, spinal instability, abscess formation, intractable pain, or a previous unsatisfactory response to conservative treatments are observed. Surgical intervention remains controversial. Different surgical procedures for debridement and fusion have been described for infectious diseases of the lumbar spine including anterior-only, posterior-only, and combined approaches14,15,16. Here, diagnostic guidelines have been presented for human BS and for the single-stage surgical treatment with transforaminal decompression, debridement, interbody fusion, and internal fixation via a posterior-only approach. A detailed protocol of this method is given below.

Protokół

The study was approved by the ethical committee of the First Affiliated Hospital of Xinjiang Medical University, China17.

1. Informed Consent

  1. Obtain the patient's informed consent after explaining the details of the surgical procedure, postoperative prognosis, and possible complications (infection, epidural hematoma, spinal cord injury, failure of internal fixation, and cerebrospinal fluid leakage).
  2. Explain the other risks generally associated with using an implant (e.g., internal fixation system) such as allergic or immune system responses to the implanted materials.
  3. Rule out any contraindications of the patients.

2. Patient selection

  1. Diagnosis of BS
    1. Base the initial diagnosis of BS on the clinical manifestations and radiographic assessments8.
      1. Look for clinical manifestations and symptoms such as back pain, undulant fever, malaise, profuse night sweating, weight loss, polyarthralgia, and generalized myalgias8,18.
      2. In plain radiographs, look for osteophytes, sclerosis, osteoporosis of the vertebral body, and narrowing of the intervertebral disc space, with posterior elements being mostly preserved.
        NOTE: Central necrosis is mostly not present, and the vertebral body is mostly morphologically intact (Figure 1)18.
      3. In computed tomography (CT), look for small bone destruction lesions at vertebral edges that occur in multiple areas, and for hyperplastic and sclerotic lesions that are more prominent and often admixed (Figure 1)18.
        ​NOTE: CT features are divided into those of vertebral osteolysis and vertebral hyperplastic sclerosis stages19.
      4. As magnetic resonance imaging (MRI) is the best imaging tool for BS diagnosis (Figure 1)20,21,22, look for characteristic MRI findings that can be classified into five subsets: discitis, spondylitis, paraspinal/psoas abscess, appendicitis, and compound (Table 1).
    2. Confirm the diagnosis according to the presence of the following three criteria23:
      1. Ensure that the clinical picture is compatible with that of BS.
      2. Confirm the absence of any etiology other than Brucellosis that can explain spinal involvement.
      3. Confirm that the results of the standard tube agglutination test reveal a titer of antibodies to Brucella of ≥ 1/16024.
  2. Indications for surgery23
    1. Look for persistent pain due to spinal instability, which is caused by severe disc or/and vertebral destruction.
    2. Confirm severe or progressive neurologic dysfunction that can be attributed to nerve root compression by inflammatory granuloma or epidural abscesses.
    3. Confirm that there is no response to oral antibiotic therapy (e.g., doxycycline, rifampicin, streptomycin).

3. Preoperative procedure

  1. Administer a chemotherapy regimen (oral doxycycline 200 mg/day plus oral rifampicin 600-900 mg/day)25 to all patients.
  2. Offer surgical interventions to patients who have surgical indications after two weeks of antibiotic treatment.

4. Operative procedures for single-stage transforaminal decompression, debridement, interbody fusion, and internal fixation via posterior-only approach

  1. Place the patient on a four-poster frame in the prone position after administration of general anesthesia with endotracheal intubation.
  2. Disinfect the surgical area with 1% iodophor, and then cover with standard surgical towels (see Table of Materials).
  3. Make a midline longitudinal incision over the spinous process of the infected vertebra.
  4. Expose the posterior spinal structures including lamina, facet joints, and transverse processes.
  5. Place the pedicle screws (diameter: 5-7 mm, length: 20-65 mm) into both sides of the affected vertebra with the assistance of C-arm fluoroscopy26,27,28 (see Table of Materials).
    NOTE: To achieve adequate debridement, place the pedicle screws closest to the superior or inferior endplate and away from the infection lesions. Fix the screws to a temporary rod (diameter: 5.5 mm) on the less involved side (see Table of Materials).
  6. Perform the facetectomy at the involved level on the side where neurologic and radiological manifestations are more severe29.
  7. Debride the epidural abscess, granulation tissues, infected disc with curettes, and scrape the vertebral endplates. Meanwhile, protect the nerve root with a nerve retractor (see Table of Materials).
    NOTE: Perform a blunt dissention to adequately drain the psoas abscess from the posterolateral as thoroughly as possible. Analyze the tissues and abscess histopathologically30,31. Noncaseating granulomatous inflammation with predominant lymphocyte and monocytes infiltration is the typical histopathologic finding of BS32. If the result of decompression and debridement is not satisfactory after a unilateral facetectomy, perform the same procedure on the opposite side.
  8. After adequately removing the lesions and decompressing the neural elements, use 1000-2000 mL of 0.9% sodium chloride solution for surgical area irrigation to clear the residual Brucellar lesion (see Table of Materials).
  9. Saturate an absorbable gelatin sponge (60 mm x 20 mm x 5 mm) with 0.75-1.5 g of streptomycin, and use it for both hemostasis and local antibiotic treatment within the surgical area (see Table of Materials).
  10. Implant the locally harvested autogenous bone into the defected space for interbody fusion with a bone graft funnel and bone pusher (see Table of Materials).
  11. Fix pedicle screws (diameter: 5-7 mm, length: 20-65 mm) on both sides to the pre-contoured rods (diameter: 5.5 mm) under a slight compression33,34 (see Table of Materials).
  12. Drain and close the lesion35 (see Table of Materials).

5. Postoperative management

  1. Administer intravenous antibiotic (cefuroxime sodium, 1.5 g, q12h) for 1-3 days postoperatively.
  2. Remove the drainage tube when the drainage volume is less than 30 mL per day.
  3. Administer the aforementioned antibiotic therapies with doxycycline (200 mg/day) and rifampicin (600-900 mg/day) for at least 3 months (range 3-12 months) after surgery.
  4. Ensure the patient remains in bed for 3-5 days postoperatively, and allow for mobilization by providing effective support with a lumbosacral brace.
  5. Perform plain radiography before the patient's discharge to evaluate the location of the graft and instrumentation.
  6. Ensure at least 2-3 months of brace protection.

6. Follow-up evaluation

  1. Follow up with the patients at 1, 3, and 6 months postoperatively and then annually.
  2. Monitor the infection by measuring erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP).
  3. Evaluate interbody fusion by radiography at the last follow-up.
    NOTE: Assess graft fusion with the radiologic criteria of Bridwell36. Perform CT scans if there is any uncertainty regarding plain radiographs.
  4. Utilize the visual analogue scale (VAS) to assess back pain.
  5. Evaluate pain-related dysfunction with the Oswestry Disability Index (ODI).
  6. Use the Japanese Orthopedic Association (JOA) scale to evaluate the functional outcomes.

Wyniki

This paper describes a prospective, non-randomized, controlled study of 32 consecutive BS patients who were treated by a single-stage transforaminal decompression, debridement, interbody fusion, and internal fixation via a posterior-only approach in the Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China. Figure 1 shows a typical case in this study.

T...

Dyskusje

The present guideline of diagnosis and surgical treatment of human BS with a detailed protocol and satisfactory clinical evidence from representative cohorts shows clinical efficacy and is proposed for large-scale application to manage human BS, especially in endemic regions. The first critical step in the treatment of BS is to make the correct diagnosis. The diagnosis of BS needs to be differentiated from spinal tuberculosis compared to which BS is relatively less bone-destructive and usually responds effectively to ant...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

Dr. Xiaoyu Cai acknowledges the financial support from the China Scholarship Council. This work was funded by the Natural Science Foundation of Xinjiang Province, P. R. China (no. 2016B03047-3).

Materiały

NameCompanyCatalog NumberComments
Absorbable gelatin spongeChuhe Medical Devices Co., Ltd.AWZ-035-XSMJHM-AD.60 mm x 20 mm x 5 mm
Box curette Rudischhauser GmbHR16-BD2310-STWidth: 7.5 mm; height: 5.9 mm; shaft: 6.0 mm (diameter); working length: 223 mm
Bone graft funnel Rudischhauser GmbHR19-K00000-FUWorking length: 246.5 mm; End diameter: 42 mm; shaft: 6.4 mm (diameter)
Bone pusher Rudischhauser GmbHR19-EK4110-00Working length: 220 mm; shaft: 6.0 mm (diameter)
Bone rongeurVet Direct & VETiscoEC-RG-BO-180Length: 180 mm
Iodophor (1%)Beijing SanYao Science & Technology Development Co.14975IVolume: 500 mL
Nerve retractorRudischhauser GmbHR16-HD1710-00Width: 10 mm; length: 145 mm; shaft: 5.0 mm (diameter)
Osteotome 1Rudischhauser GmbHR16-CD2310-08Width: 8 mm; height: 3 mm; shaft: 6.0 mm (diameter); working length: 223 mm
Osteotome 2Rudischhauser GmbHR16-CD2310-10Width: 10 mm; height: 3 mm; shaft: 6.0 mm (diameter); working length: 223 mm
Pedicle screwDePuy Synthes Companies199723540Length: 40 mm; diameter: 5.0 mm
DePuy Synthes Companies199723545Length: 45 mm; diameter: 5.0 mm
DePuy Synthes Companies199723550Length: 50 mm; diameter: 5.0 mm
DePuy Synthes Companies199723640Length: 40 mm; diameter: 6.0 mm
DePuy Synthes Companies199723645Length: 45 mm; diameter: 6.0 mm
DePuy Synthes Companies199723650Length: 50 mm; diameter: 6.0 mm
DePuy Synthes Companies199723740Length: 40 mm; diameter: 7.0 mm
DePuy Synthes Companies199723745Length: 45 mm; diameter: 7.0 mm
DePuy Synthes Companies199723750Length: 50 mm; diameter: 7.0 mm
Securo DrainDispomedica GmbH1.33578Size: 7 mm; Length of perforation: 15 cm; Total length: 80 cm; Reservior size: 150 ml
Sterile 0.9% Sodium Chloride SolutionBeijing SanYao Science & Technology Development Co.15935SVolume: 500 mL
Straight rodDePuy Synthes Companies1797-62-480Length: 480 mm; diameter: 5.5 mm
Streptomycin sulfate, PowderBeijing SanYao Science & Technology Development Co.P06-11025PSize: 1 g

Odniesienia

  1. Rubach, M. P., Halliday, J. E., Cleaveland, S., Crump, J. A. Brucellosis in low-income and middle-income countries. Current Opinion in Infectious Diseases. 26 (5), 404-412 (2013).
  2. Atluri, V. L., Xavier, M. N., de Jong, M. F., den Hartigh, A. B., Tsolis, R. M. Interactions of the human pathogenic Brucella species with their hosts. Annual Review of Microbiology. 65, 523-541 (2011).
  3. Tan, K. -. K., et al. Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis. BMC Genomics. 16 (1), 93 (2015).
  4. Pappas, G., Papadimitriou, P., Akritidis, N., Christou, L., Tsianos, E. V. The new global map of human brucellosis. The Lancet Infectious Diseases. 6 (2), 91-99 (2006).
  5. Harman, M., Unal, &. #. 2. 1. 4. ;., Onbaşi, K. T., Kıymaz, N., Arslan, H. Brucellar spondylodiscitis: MRI diagnosis. Clinical Imaging. 25 (6), 421-427 (2001).
  6. Lee, H. J., Hur, J. W., Lee, J. W., Lee, S. R. Brucellar spondylitis. Journal of Korean Neurosurgical Society. 44 (4), 277-279 (2008).
  7. Pourbagher, A., et al. Epidemiologic, clinical, and imaging findings in brucellosis patients with osteoarticular involvement. AJR American Journal of Roentgenology. 187 (4), 873-880 (2006).
  8. Ulu-Kilic, A., et al. Update on treatment options for spinal brucellosis. Clinical Microbiology and Infection. 20 (2), 75-82 (2014).
  9. Araj, G. F. Update on laboratory diagnosis of human brucellosis. International Journal of Antimicrobial Agents. 36, 12-17 (2010).
  10. Alp, E., Doganay, M. Current therapeutic strategy in spinal brucellosis. International Journal of Infectious Diseases. 12 (6), 573-577 (2008).
  11. Solís García del Pozo, J., Solera, J. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis. PLoS One. 7 (2), 32090 (2012).
  12. Nas, K., et al. Management of spinal brucellosis and outcome of rehabilitation. Spinal Cord. 39 (4), 223-227 (2001).
  13. Chelli Bouaziz, M., Ladeb, M. F., Chakroun, M., Chaabane, S. Spinal brucellosis: a review. Skeletal Radiology. 37 (9), 785-790 (2008).
  14. Gregori, F., et al. Treatment algorithm for spontaneous spinal infections: A review of the literature. Journal of Craniovertebral Junction and Spine. 10 (1), 3-9 (2019).
  15. Lener, S., et al. Management of spinal infection: a review of the literature. Acta Neurochirurgica. 160 (3), 487-496 (2018).
  16. Sansalone, C. V., et al. Anterior approach to the spine. Role of the general surgeon, techniques and surgical complications. The 10-year experience of the Niguarda Hospitals. Journal of Neurosurgical Sciences. 55 (4), 357-363 (2011).
  17. Gao, L., Guo, R., Han, Z., Liu, J., Chen, X. Clinical trial reporting. Lancet. 396 (10261), 1488-1489 (2020).
  18. Tu, L., et al. Imaging-assisted diagnosis and characteristics of suspected spinal Brucellosis: A retrospective study of 72 cases. Medical Science Monitor. 24, 2647-2654 (2018).
  19. Zhao, Y. T., Yang, J. S., Liu, T. J., He, L. M., Hao, D. J. Sclerosing vertebra in the spine: typical sign of spinal brucellosis. Spine Journal. 15 (3), 550-551 (2015).
  20. Yang, X., Zhang, Q., Guo, X. Value of magnetic resonance imaging in brucellar spondylodiscitis. La Radiologia Medica. 119 (12), 928-933 (2014).
  21. Buzgan, T., et al. Clinical manifestations and complications in 1028 cases of brucellosis: a retrospective evaluation and review of the literature. International Journal of Infectious Diseases. 14 (6), 469-478 (2010).
  22. Bai, Y., Qiao, P. F., Gao, Y., Niu, G. MRI characteristics of brucellar spondylodiscitis in cervical or thoracic segments. Biomedical Research-Tokyo. 28, 7820-7825 (2017).
  23. Katonis, P., Tzermiadianos, M., Gikas, A., Papagelopoulos, P., Hadjipavlou, A. Surgical treatment of spinal brucellosis. Clinical Orthopaedics and Related Research. 444, 66-72 (2006).
  24. Yang, B., Hu, H., Chen, J., He, X., Li, H. The evaluation of the clinical, laboratory, and radiological findings of 16 cases of Brucellar spondylitis. BioMed Research International. 2016, 8903635 (2016).
  25. Liang, C., Wei, W., Liang, X., De, E., Zheng, B. Spinal brucellosis in Hulunbuir, China, 2011-2016. Infection and Drug Resistance. 12, 1565-1571 (2019).
  26. Merloz, P., et al. Fluoroscopy-based navigation system in spine surgery. Proceedings of the Institution of Mechanical Engineers, Part H. 221 (7), 813-820 (2007).
  27. Foley, K. T., Simon, D. A., Rampersaud, Y. R. Virtual fluoroscopy. Operative Techniques in Orthopaedics. 10, 77-81 (2000).
  28. Foley, K. T., Simon, D. A., Rampersaud, Y. R. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine. 26, 347-351 (2001).
  29. Kang, K., et al. Partial facetectomy for lumbar foraminal stenosis. Advances in Orthopedics. , 534658 (2014).
  30. Bostian, P. A., et al. Novel rat tail discitis model using bioluminescent Staphylococcus aureus. Journal of Orthopaedic Research. 35 (9), 2075-2081 (2017).
  31. Scott, M. A., et al. Brief review of models of ectopic bone formation. Stem Cells and Development. 21 (5), 655-667 (2012).
  32. Li, T., Liu, T., Jiang, Z., Cui, X., Sun, J. Diagnosing pyogenic, brucella and tuberculous spondylitis using histopathology and MRI: A retrospective study. Experimental and Therapeutic Medicine. 12 (4), 2069-2077 (2016).
  33. Foley, K. T., Gupta, S. K. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. Journal of Neurosurgery. 97, 7-12 (2002).
  34. Verma, K., Boniello, A., Rihn, J. Emerging techniques for posterior fixation of the lumbar spine. Journal of the American Academy of Orthopaedic Surgeons. 24 (6), 357-364 (2016).
  35. Stoker, D. L., Jain, S. K., Jain, S. K., Stoker, D. L., Tanwar, R. Drains in Surgery. Basic Surgical Skills and Techniques. , (2018).
  36. Bridwell, K. H., Lenke, L. G., McEnery, K. W., Baldus, C., Blanke, K. Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects. Spine. 20 (12), 1410-1418 (1995).
  37. Abulizi, Y., Liang, W. -. D., Muheremu, A., Maimaiti, M., Sheng, W. -. B. Single-stage transforaminal decompression, debridement, interbody fusion, and posterior instrumentation for lumbosacral brucellosis. BMC Surgery. 17 (1), 82 (2017).
  38. Ioannou, S., et al. Efficacy of prolonged antimicrobial chemotherapy for brucellar spondylodiscitis. Clinical Microbiology and Infection. 17 (5), 756-762 (2011).
  39. Herren, C., et al. Spondylodiscitis: diagnosis and treatment options. Deutsches Arzteblatt International. 114 (51-52), 875-882 (2017).
  40. Erdem, H., et al. Comparison of brucellar and tuberculous spondylodiscitis patients: results of the multicenter "Backbone-1 Study". Spine Journal. 15 (12), 2509-2517 (2015).
  41. Garg, B., Kandwal, P., Nagaraja, U. B., Goswami, A., Jayaswal, A. Anterior versus posterior procedure for surgical treatment of thoracolumbar tuberculosis: A retrospective analysis. Indian Journal of Orthopaedics. 46 (2), 165-170 (2012).
  42. Bian, Z., Gui, Y., Feng, F., Shen, H., Lao, L. Comparison of anterior, posterior, and anterior combined with posterior surgical treatment of thoracic and lumbar spinal tuberculosis: a systematic review. Journal of International Medical Research. 48 (2), 300060519830827 (2019).
  43. Yan, D. -. L., Pei, F. -. x., Li, J., Soo, C. -. l. Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis. European Spine Journal. 17 (10), 1311-1316 (2008).
  44. Schwender, J. D., Holly, L. T., Rouben, D. P., Foley, K. T. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. Journal of Spinal Disorders and Techniques. 18, 1-6 (2005).
  45. Rouben, D., Casnellie, M., Ferguson, M. Long-term durability of minimal invasive posterior transforaminal lumbar interbody fusion: a clinical and radiographic follow-up. Journal of Spinal Disorders and Techniques. 24 (5), 288-296 (2011).
  46. Chen, Y., et al. One-stage surgical management for lumbar Brucella spondylitis by posterior debridement, autogenous bone graft and instrumentation: a case series of 24 patients. Spine. 42 (19), 1112-1118 (2017).
  47. Choma, T., Pfeiffer, F., Vallurupalli, S., Mannering, I., Pak, Y. Segmental stiffness achieved by three types of fixation for unstable lumbar spondylolytic motion segments. Global Spine Journal. 2 (2), 79-86 (2012).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Brucellar SpondylodiscitisHuman BrucellosisOsteoarticular InfectionDiagnostic MethodSurgical TreatmentTransforaminal DecompressionDebridementInterbody FusionInternal FixationClinical ManifestationsRadiographic AssessmentTreatment RegimenAntibiotic DurationCase Criteria

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone