Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a standardized method for measurement of the hand transmitted vibration from handles of a single-axle tractor with special reference to changes in grip force and vibration frequency.
Operators of hand tractors are exposed to high levels of hand transmitted vibration (HTV). This vibration, which can be both irksome and hazardous to human health, is imparted to the operator via his or her hands and arms. However, a standardized method for measuring HTV of hand tractors has yet to be defined. The aim of the study was to present an experimental method for the investigation of the biodynamic response and vibration transmissibility of the hand-arm system during the operation of a hand tractor in a stationary mode. Measurements were performed with ten subjects using three grip forces and three handle vibration levels to examine the influences of the hand pressure and frequency on hand transmitted vibration (HTV). The results indicate that the tightness of grip on the handle influences the vibration response of the hand-arm system, especially at frequencies between 20 and 100 Hz. The transmission of lower frequencies in the hand-arm system was relatively unattenuated. In comparison, attenuation was found to be quite marked for higher frequencies during the operation of the hand tractor. The vibration transmissibility to different parts of the hand-arm system decreased with the increase of the distance from the vibration source. The proposed methodology contributes to the collection of consistent data for the evaluation of operator vibration exposure and the ergonomics development of hand tractors.
Hand tractors, also known as power tillers, are widely used in developing countries for the land preparation of small fields. The field operation of a hand tractor involves walking behind the machine and holding its handles to control its movement. The operators of hand tractors are exposed to high levels of vibration, which could be attributed to the small single cylinder engine and lack of suspension system of hand tractors1. The hand-arm vibration syndrome (HAVS)2 can be caused by long-period endurance from the vibration, named hand transmitted vibration (HTV), which generated by the hand tractor and received by the operator's hands. To assess the health risks derived by operators' exposure to the HTV of hand tractors, it is necessary to establish a method for the measurement of the vibration response of the hand-arm system.
The hand-arm system is composed of bones, muscles, tissues, veins and arteries, tendons and skin3, and the direct measurement of HTV poses many problems. The relevant international standards4,5 provide guidelines pertaining to the measurement of the severity of vibration generated in the immediate vicinity of the hand, including the coordinate system for the hand, the location and mounting of accelerometers, the measurement duration, cable connector problems, etc. However, the standards do not take into consideration intrinsic variables, such as the grip force, the posture of the hand and arm, individual factors, etc. These factors have been examined extensively under a wide range of vibration excitations and test conditions6,7,8,9,10,11,12,13, but the results of different investigators are not in good agreement. Many of these factors have not been sufficiently understood to be incorporated into standard methods. This restriction is partially attributable to the complexities of the human hand-arm system, the test conditions, and the differences in the experimental and measurement techniques employed.
Moreover, most of the earlier measurements of HTV were performed under carefully controlled conditions with idealized vibration excitations, grip force, and postural conditions. The findings and experimental procedures of these measurements, therefore, may not truly replicate real-world conditions, such as the operating conditions of hand tractors. Moreover, only limited efforts have been undertaken to study the HTV of hand tractors with field measurements. These measurements were performed using accelerometers attached to the operator's wrist, arm, chest, and head to measure the whole body vibration under the tractor's transportation conditions1, or under the conditions of tilling in an untilled field and puddling in a submerged field with different levels of engine speeds14. The effect of the grip force, which could be a crucial factor of HTV7,8, was not isolated. These methods are therefore unsuitable as standardized measurement procedures due to the operator's various forced postures during farming ascribed to the harsh environmental conditions.
The present research was undertaken to contribute to the establishment of reliable and repeatable procedures for the HTV measurement of hand tractors in a stationary mode. Figure 1 presents the schematic diagram of the experimental design. A hand tractor manufactured in China and commonly used by Chinese farmers was employed, and ten research workers were chosen as subjects for the study. Seven lightweight piezoelectric accelerometers attached to the tractor-hand-arm system were used to measure the vibration. One tachometer and two thin-film pressure sensors monitored the engine speed and grip force during testing. The subjects were required to sequentially operate the hand tractor at specified engine speeds and with specified grip forces to obtain the vibration characteristics in various operational modes. This manuscript provides a detailed protocol for the HTV measurement of the tractor-hand-arm system with unique consideration of changes in the grip force and vibration frequency.
All procedures were approved by the Ethics Committee of Chongqing University of Technology and each subject provided written informed consent prior to participation in this study.
1. Hand tractor preparation
2. Subject preparation
3. Measurement system setup
4. Experiment and data acquisition
5. Data processing and analysis
The experiment was carried out in the laboratory (air temperature 22.0 °C ± 1.5 °C) on ten healthy subjects (Table 2) during the operation of a hand tractor in a stationary condition.
Following the protocol, vibration acceleration data were collected from the handle of the hand tractor, as well as the back of the hand, the wrist, the arm, and the shoulder of each subject. The spectrum of the vibration acceleration occurring at the handle (input to the hand) was ...
The protocol presented in this study was established based on HTV standards4,5,24, and was developed as the standard steps for the measurement of the HTV of the human hand-arm system during the operation of a hand tractor in a stationary condition. This condition is the most stable state of the hand tractor to help ensure the reliable measurement of the vibration actually transmitted to the hand and arm. The range of variables c...
The authors have nothing to disclose.
This work was supported by the Natural Science Foundation of Chongqing, China (cstc2019jcyj-msxmX0046), the project of Chongqing Education Commission of China (KJQN202001127), and the project of Banan District Science and Technology Commission, Chongqing, China (2020TJZ010). The authors would like to thank Prof. Yan Yang for providing the test site. We are also grateful to Dr. Jingshu Wang and Dr. Jinghua Ma for their guidance of using the vibration measurement instrumentation. Thanks are also due to the subjects for their wholehearted cooperation during the experiments.
Name | Company | Catalog Number | Comments |
Accelerometers | PCB Piezotronics Inc. | 352C33, 356A04 | Used to measure vibration signals. Including 2 tri-axial accelerometers and 5 single-axis accelerometers. |
CompactDAQ System | National Instruments | cRIO-9045,NI-9234 C | Used for acceleration acquisition. The system consists of a chassis and 3 data acquisition cards. |
Digital caliper | Sanliang | 160800635 | Used to measure dimensions of the hand. |
Digital goniometer | Sanliang | 802973 | Used to measure hand and arm posture. |
Laptop computer | Lenovo | Ideapad 500s | To run the softwares. |
Matlab | MathWorks Inc. | Version 2020a | Used for data processing. |
NI SignalExpress | National Instruments | Trial version 2015 | Use to acquire, analyze and present acceleration data. |
Tachometer | Sanliang | TM 680 | Used to measure engine speed. |
Thin-film pressure sensing system | YourCee | n/a | Used to measure grip force. The system consists of 2 thin-film sensors, a STM32 singlechip and a LED display. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone