Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This versatile protocol describes the isolation of premigratory neural crest cells (NCCs) through the excision of cranial neural folds from chick embryos. Upon plating and incubation, migratory NCCs emerge from neural fold explants, allowing for assessment of cell morphology and migration in a simplified 2D environment.
During vertebrate development, neural crest cells (NCCs) migrate extensively and differentiate into various cell types that contribute to structures like the craniofacial skeleton and the peripheral nervous system. While it is critical to understand NCC migration in the context of a 3D embryo, isolating migratory cells in 2D culture facilitates visualization and functional characterization, complementing embryonic studies. The present protocol demonstrates a method for isolating chick cranial neural folds to generate primary NCC cultures. Migratory NCCs emerge from neural fold explants plated onto a fibronectin-coated substrate. This results in dispersed, adherent NCC populations that can be assessed by staining and quantitative morphological analyses. This simplified culture approach is highly adaptable and can be combined with other techniques. For example, NCC emigration and migratory behaviors can be evaluated by time-lapse imaging or functionally queried by including inhibitors or experimental manipulations of gene expression (e.g., DNA, morpholino, or CRISPR electroporation). Because of its versatility, this method provides a powerful system for investigating cranial NCC development.
Neural crest cells (NCCs) are a transient cell population in vertebrate embryos. NCCs are specified at the borders of the neural plate and undergo an epithelial-to-mesenchymal transition (EMT) to migrate from the dorsal neural tube1. After EMT, NCCs disperse extensively throughout the embryo, ultimately differentiating and contributing to various structures, including the craniofacial skeleton, outflow tract of the heart, and the majority of the peripheral nervous system2. Changes in cell polarity, the cytoskeleton, and adhesion properties underly this shift from a premigratory to a migratory cell population3. Studying NCC EMT and migration provides insights into fundamental mechanisms of cell motility and informs efforts to prevent and treat birth defects and cancer metastasis.
While in vivo analysis is vital for understanding NCC developmental processes in an embryonic context, in vitro methods offer visual and physical accessibility that facilitate additional experimental avenues. In a simplified 2D environment, NCC morphology, cytoskeletal structures, and distance migrated can be evaluated. Moreover, the effects of genetic or soluble factor perturbation on migratory behaviors of motile NCCs can be analyzed4,5,6,7,8,9,10. In addition, isolated premigratory or migratory NCCs can be collected, pooled, and used for high-throughput methodologies to study the developmental regulation of NCCs through proteomic, transcriptomic, and epigenomic profiling7,11. While methods are available for preparing cranial NCCs from various developmental model organisms12,13,14, this article demonstrates the mechanics of the approach for those first learning to culture cranial NCC from chick embryos.
The current protocol describes a versatile technique for preparing chick cranial NCC cultures (Figure 1). Because NCCs migrate readily from explanted neural folds onto a culture substrate, chick NCCs naturally segregate from embryonic tissue, and primary cultures are easily generated. As midbrain NCCs migrate en masse from the cranial neural folds (in contrast to the protracted, cell-by-cell delamination in the trunk15), these cultures consist mainly of migratory cranial neural crest cells, with initial neural fold excision providing a collection method for premigratory NCCs. A basic method for dissecting and culturing chick cranial neural folds is detailed, and suggestions for different applications and variations on this method are offered.
Figure 1: Schematic overview of the chick cranial neural fold culture protocol. (A,B) Cranial neural folds (outlined in blue) are excised from a chick embryo with five somites (shown in dorsal view in A). Grey bands, cardiac crescent. (C) When plated on fibronectin, migratory neural crest cells emerge from the neural folds and disperse onto the substrate. Please click here to view a larger version of this figure.
Any variety of Gallus gallus breeds may be used, including White Leghorn, Golden Sex Link, or Rhode Island Red. The chicken eggs used in the present study were of various breeds and obtained from multiple sources, including local farms and hatcheries.
1. Preparation of solutions and materials
2. Embryo incubation
3. Preparation of culture dishes
4. Isolation of chick embryos
5. Dissecting neural folds
6. Plating neural folds
7. Fixing and staining of cultured migratory NCCs for morphological analysis
8. Morphological assessment of cultured migratory NCCs
An overview of the present protocol is shown in Figure 1. The incubated eggs were opened, and the yolk, with the embryo on the surface, was isolated by gently pouring into the palm of a gloved hand (Figure 2A,B). After clearing away the albumin (Figure 2C), filter paper frames were applied to the yolk membrane surrounding the embryo to facilitate cutting and lifting the embryo from the yolk, which begins to spill aw...
The technique described here provides an adaptable method of isolating chick neural folds and plating them to create cultures of migratory cranial NCCs. These cultures provide simplified 2D conditions for easy analysis of chick NCC migration and morphology that can supplement more technically challenging in ovo imaging methods24,25,26. While this in vitro method is relatively simple, consistent results depend o...
The authors have no conflicts of interest.
We thank Corinne A. Fairchild and Katie L. Vermillion, who participated in developing our version of the chick cranial neural fold culture protocol.
Name | Company | Catalog Number | Comments |
AxioObserver equipped with an LSM710 confocal scan head controlled by ZEN 3.0 SR software | Zeiss | Used alpha Plan-Apochromat 100x/1.46 Oil DIC M27 objective | |
CaCl2 | Sigma-Aldrich | C3306 | |
Chamber dishes (glass bottom, single or divided) | MatTek; Cell Vis | P35G-1.5-14-C (MatTek) X000NOJQGX (Cellvis) X000NOK1OJ (Cellvis) | Single chamber 35 mm or 4 chamber 35 mm |
Cover glass | Carolina Biological Supply Company | 633029, 633031, 633033, 633035, 633037 | circles, 0.13–0.17 mm thickness, available in 12-25 mm diameter |
DMEM/F12 | ThermoFisher Scientific | 11320033 | Alternative for L15 media |
Egg incubator | Sportsman | 1502 | |
FBS | Life Technologies | 10437-028 | |
Fibronectin | Fisher Scientific | CB-40008A | |
Filter paper | Whatman | grade 3MM chromatography | |
Forceps (blunt) | Fisher Scientific; Thomas Scientific | 08-890 (Fisher);1141W97 (Thomas) | |
Forceps (fine) | Fine Science Tools | 11252-20 | Dumont #5 |
Image J | https://fiji.sc/ | Free image analysis software | |
KCl | Sigma-Aldrich | P3911 | |
KH2PO4 | Sigma-Aldrich | P0662 | |
L15 media | Invitrogen | 11415064 | |
L-glutamine | Invitrogen | 25030 | |
Mounting Media (Vectashield or ProLong Gold) | Vector Laboratories; Thermofisher Scientific | H-1700 (Vectashield); P36930 (ProLong Gold) | |
Na2HPO4 | Sigma-Aldrich | S9638 | |
NaCl | Sigma-Aldrich | S9888 | |
Paraformaldehyde | Sigma-Aldrich | P6148 | |
Penicillin/streptomycin | Life Technologies | 15140-148 | 10,000 Units/mL Penicillin; 10,000 mg/mL Streptomycin |
Petri Dishes | VWR (or similar) | 60 mm, 100 mm | |
Phalloidin | Sigma-Aldrich | P1951 | multiple flurophores available |
Pin holder | Fine Science Tools | 26016-12 | For tungsten needle (alternative for spring scissors) |
Scissors (dissection) | Fine Science Tools | 14061-10 | |
Spring Scissors | Fine Science Tools | 15000-08 | 2.5 mm cutting edge (alternative for tungsten needle) |
Sylgard | Krayden | Sylgard 184 | |
Syringe Filters | Sigma-Aldrich | SLGVM33RS | Millex-GV Syringe Filter Unit, 0.22 µm, PVDF, 33 mm, gamma sterilized |
Tissue culture dishes | Sarstedt | 83-3900 | 35 mm culture dishes for bulk neural fold cultures |
Triton X-100 | Sigma-Aldrich | X100 | |
Tungsten wire | Variety of sources | 0.01" diameter for tungsten needle (alternative for spring scissors) |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone