Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
The present protocol describes a method to isolate, expand, and reprogram human and non-human primate urine-derived cells to induced pluripotent stem cells (iPSCs), as well as instructions for feeder-free maintenance of the newly generated iPSCs.
Cross-species approaches studying primate pluripotent stem cells and their derivatives are crucial to better understand the molecular and cellular mechanisms of disease, development, and evolution. To make primate induced pluripotent stem cells (iPSCs) more accessible, this paper presents a non-invasive method to generate human and non-human primate iPSCs from urine-derived cells, and their maintenance using a feeder-free culturing method.
The urine can be sampled from a non-sterile environment (e.g., the cage of the animal) and treated with a broad-spectrum antibiotic cocktail during primary cell culture to reduce contamination efficiently. After propagation of the urine-derived cells, iPSCs are generated by a modified transduction method of a commercially available Sendai virus vector system. First iPSC colonies may already be visible after 5 days, and can be picked after 10 days at the earliest. Routine clump passaging with enzyme-free dissociation buffer supports pluripotency of the generated iPSCs for more than 50 passages.
Genomic comparisons of human and non-human primates (NHPs) are crucial to understand our evolutionary history and the evolution of human-specific traits1. Additionally, these comparisons allow for the inference of function by identifying conserved DNA sequences2, e.g., to prioritize disease-associated variants3. Comparisons of molecular phenotypes such as gene expression levels are crucial to better interpret genomic comparisons and to discover, for example, cellular phenotypic differences. Furthermore, they have - similar to comparisons at the DNA level - the potential to infer functional relevan....
This experimental procedure was approved by the responsible ethic committee on human experimentation (20-122, Ethikkommission LMU München). All experiments were performed in accordance with relevant guidelines and regulations.
NOTE: Approval must be obtained from the appropriate ethical committee before starting experiments dealing with human and NHP samples. All experimental procedures must be performed in accordance with relevant guidelines and regulations. Each of the following steps should be performed using sterile technique in a biological safety cabinet. All buffer and media compositions can be found in Supplementary Table S1. Ensure....
When isolating cells from human and NHP urine, different types of cells can be identified directly after isolation. Squamous cells, as well as various smaller round cells, get excreted with the urine; female urine contains far more squamous cells than male urine (Figure 1B - Day 0; Supplementary Figure S1). After 5 days of culture in primary urine medium, the first adherent proliferating cells can be seen (Figure 1A,B - Day.......
iPSCs are valuable cell types as they allow the generation of otherwise inaccessible cell types in vitro. As the starting materials for reprogramming, for example, fibroblasts are not easily available from all primate species, this paper presents a protocol for the generation of iPSCs from urine-derived cells. These cells can be obtained in a non-invasive manner, even from non-sterile primate urine samples, by supplementing the culture medium with broad-spectrum antibiotics.
Several c.......
The authors have no conflicts of interest to disclose.
This work was supported by DFG EN 1093/5-1 (project number 458247426). M.O. was supported by JSPS Overseas Research Fellowship. All figures were created with BioRender.com. Flow cytometry was performed with the help of the Core Facility Flow Cytometry at Biomedical Center Munich. We would like to thank Makoto Shida and Tomoyo Muto from ASHBi, Kyoto University, for support of videography.
....Name | Company | Catalog Number | Comments |
Accumax™ cell detachment solution (Detachment solution) | Sigma-Aldrich | SCR006 | |
Amphotericin B-Solution | Merck | A2941-100ML | |
Anti-Human TRA-1-60 Mouse Antibody | Stem Cell Technologies | 60064 | Dilution: 1/200 |
Anti-Human TRA-1-60 PE-conjugated Antibody | Miltenyi Biotec | 130-122-965 | Dilution: 1/50 |
Bambanker™ (Cell freezing medium) | Nippon Genetics | BB01 | |
Bovine Serum Albumin (BSA) | Sigma-Aldrich | A3059-100G | |
Cell culture multiwell plate, 12-well CELLSTAR | Greiner BIO-ONE | 665180 | |
Countess™ II automated cell counter | Thermo Fisher Scientific | AMQAX1000 | |
CryoKing® 1.5 mL Tubes with 2D Barcode (Cryotubes) | Sued-Laborbedarf | 52 95-0213 | Different types of Cryotubes can be used for freezing. The 2D barcode tubes have the advantage that the sample info can be stored in a database with unique tube information. |
CytoTune™ EmGFP Sendai Fluorencence Reporter (GFP Sendai virus) | Thermo Fisher Scientific | A16519 | |
CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Sendai virus reprogramming kit) | Thermo Fisher Scientific | A16518 | |
DAPI 4',6-Diamidine-2'-phenylindole dihydrochloride | Sigma-Aldrich | 10236276001 | |
DMEM High Glucose | TH.Geyer | L0102 | |
DMEM/F12 w L-glutamine | Fisher Scientific | 15373541 | |
Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488 | Thermo Fisher Scientific | A-21202 | Dilution: 1/500 |
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 594 | Thermo Fisher Scientific | A-21207 | Dilution: 1/500 |
DPBS w/o Calcium w/o Magnesium | TH.Geyer | L0615-500 | |
EpCAM Recombinant Polyclonal Rabbit Antibody (22 HCLC) | Thermo Fisher Scientific | 710524 | Dilution: 1/500 |
Ethylenediamine tetraacetic acid (EDTA) | Carl Roth | CN06.3 | |
Falcon Tube 15 mL conical bottom | Greiner BIO-ONE | 188271-N | |
Falcon Tube 50 mL conical bottom | Greiner BIO-ONE | 227261 | |
Fetal Bovine Serum, qualified, heat inactivated, Brazil (FBS) | Thermo Fisher Scientific | 10500064 | |
FlowJo V10.8.2 | FlowJo | 663441 | |
Gelatin from porcine skin | Sigma-Aldrich | G1890-1KG | |
Geltrex™ LDEV-Free, hESC-Qualified, Reduced Growth Factor Basement Membrane Matrix | Thermo Fisher Scientific | A1413301 | |
GlutaMAX™ Supplement | Thermo Fisher Scientific | 35050038 | |
Heracell™ 240i CO2 incubator | Fisher Scientific | 16416639 | |
Heraeus HeraSafe safety cabinet | Kendro | 51017905 | |
Human EGF, premium grade | Miltenyi Biotec | 130-097-749 | |
ImageJ | Fiji | Version 2.9.0 | |
MEM Non-Essential Amino Acids Solution (100X) | Thermo Fisher Scientific | 11140035 | |
Microcentrifugation tube PP, 1.5 mL | Nerbe Plus | 04-212-1000 | |
Microscope Nikon eclipse TE2000-S | Nikon | TE2000-S | |
Mouse anti-alpha-Fetoprotein antibody | R&D Systems | MAB1368 | Dilution: 1/100 |
Mouse anti-alpha-Smooth Muscle Actin antibody | R&D Systems | MAB1420 | Dilution: 1/100 |
Mouse anti-beta-III Tubulin antibody | R&D Systems | MAB1195 | Dilution: 1/100 |
mTeSR™ 1 | STEMCELL Technolgies | 85850 | |
Nanog (D73G4) XP Rabbit mAb | Cell Signaling Technology | 4903S | Dilution: 1/400 |
Normocure™ (Antimicrobial Reagent) | Invivogen | ant-noc | |
Oct-4 Rabbit Antibody | Cell Signaling Technology | 2750S | Dilution: 1/400 |
Paraformaldehyde (PFA) | Sigma-Aldrich | 441244-1KG | |
Penicillin-Streptomycin (10.000 U/ml) (PS) | Thermo Fisher Scientific | 15140122 | Penicillin-Streptomycin mix contains 100 U/mL Penicillin and 100 µg/mL Streptomycin. |
Recombinant Human FGF-basic | PeproTech | 100-18B | |
Recombinant Human PDGF-AB | PeproTech | 100-00AB | |
Refrigerated benchtop centrifuge | SIGMA | 4-16KS | |
Renal Epithelial Cell Basal Medium | ATCC | PCS-400-030 | |
Renal Epithelial Cell Growth Kit | ATCC | PCS-400-040 | |
Sox2 (L1D6A2) Mouse mAb #4900 | Cell Signaling Technology | 4900S | Dilution: 1/400 |
SSEA4 (MC813) Mouse mAb | NEB | 4755S | Dilution: 1/500 |
StemFit® Basic02 | Nippon Genetics | 3821.00 | The production of this medium was discontinued, use StemFit Basic04CT for human cell lines or StemFit Basic03 for non-human primates instead. |
Triton X-100 | Sigma-Aldrich | T8787-50ML | |
TrypLE™ Select Enzyme (1x), no phenol red (Dissociation enzyme) | Thermo Fisher Scientific | 12563011 | |
Waterbath Precision GP 05 | Thermo Fisher Scientific | TSGP05 | |
Y-27632, Dihydrochloride Salt (Rock Inhibitor) | Biozol | BYT-ORB153635 | |
Antibody dilution buffer | For composition see the supplementary table S1 | ||
Blocking buffer | For composition see the supplementary table S1 | ||
REMC medium | For composition see the supplementary table S1 | ||
Primary urine medium | For composition see the supplementary table S1 | ||
PSC culture medium | For composition see the supplementary table S1 | ||
PSC generation medium | For composition see the supplementary table S1 | ||
Urine wash buffer | For composition see the supplementary table S1 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone