É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
* Estes autores contribuíram igualmente
Os corais criam ecossistemas biodiversos importantes para humanos e organismos marinhos. No entanto, ainda não entendemos todo o potencial e função de muitas células de coral. Aqui, apresentamos um protocolo desenvolvido para o isolamento, rotulagem e separação de populações de células de corais pedregosos.
Recifes de coral estão sob ameaça devido a estressores antropogênicos. A resposta biológica dos corais a esses estressores pode ocorrer a nível celular, mas os mecanismos não são bem compreendidos. Para investigar a resposta dos corais aos estressores, precisamos de ferramentas para analisar as respostas celulares. Em particular, precisamos de ferramentas que facilitem a aplicação de ensaios funcionais para entender melhor como as populações celulares estão reagindo ao estresse. No presente estudo, utilizamos a triagem celular ativada por fluorescência (FACS) para isolar e separar diferentes populações celulares em corais pedregosos. Este protocolo inclui: (1) a separação dos tecidos de coral do esqueleto, (2) a criação de uma única suspensão celular, (3) rotular as células de coral usando vários marcadores para citometria de fluxo, e (4) estratégias de gating e classificação celular. Esse método permitirá que os pesquisadores trabalhem em corais no nível celular para análise, ensaios funcionais e estudos de expressão genética de diferentes populações celulares.
Recifes de corais são um dos ecossistemas mais importantes da Terra. Eles facilitam a biodiversidade fornecendo habitats críticos para peixes e invertebrados e são cruciais para sustentar comunidades antropogênicas, fornecendo alimentos e meios de subsistência econômicas através do turismo1. Como principal construtor de recifes de corais, o animal de coral (Phylum: Cnidaria) também auxilia as comunidades costeiras, criando grandes estruturas de carbonato de cálcio que mitigam os danos causados por ondas e tempestades2.
Corais como adultos são animais sessil que hospedam uma ampla gama de parceiros endossímbios, incluindo vírus, arqueias, bactérias, protistas, fungos e, mais notavelmente, membros da família algal dinoflagellate Symbiodiniaceae3. Mudanças no ambiente podem causar desequilíbrios nesta comunidade, muitas vezes levando a surtos de doenças e branqueamento de corais em que os simbióticos Simbióticos Simbiodiniaceae são expulsos da colônia de corais, eliminando assim a principal fonte de nutrição para os corais. Ambos os cenários costumam causar a morte do hospedeiro coral4,,5,6. Os efeitos dos estressores induzidos por antropogênicos, como as rápidas mudanças climáticas, estão acelerando os eventos de morte em massa de corais, levando a um declínio global dos recifes de coral7.
Recentemente, muitos métodos diferentes foram desenvolvidos para ajudar a mitigar a perda de recifes de coral. Esses métodos incluem o não planejamento de corais nos recifes existentes, a travessia genética usando genótipos termicamente tolerantes e a manipulação celular das comunidades microbianas e simbióticas hospedadas dentro do coral8,,9. Apesar desses esforços, muito ainda é desconhecido sobre a diversidade celular coral e a função celular10,11,12,13. Uma compreensão completa da diversidade do tipo celular coral e da função celular é necessária para entender como o organismo coral se comporta sob condições normativas e estressantes. Os esforços para maximizar a eficiência de restauração e preservação se beneficiarão de uma compreensão aprimorada de como a diversidade celular e a função genética são acopladas.
Trabalhos anteriores sobre diversidade e função celular tem focado principalmente em estudos histológicos e amostragem de RNA de tecido inteiro14,,15,,16,,17. Para obter maior detalhe sobre a função específica do tipo celular nos corais, é necessário que haja métodos para o isolamento de populações específicas de células de corais vivos. Isso tem sido feito com sucesso em organismos de modelos não clássicos por meio da tecnologia de citometria de fluxo ativada pela fluorescência (FACS)18. O FACS utiliza uma combinação de lasers sintonizados em diferentes comprimentos de onda para medir diferentes propriedades celulares endógenas no nível de célula única, como tamanho relativo da célula, granularidade celular e autofluorescência. Além disso, as células podem ser marcadas por compostos fluorescentes rotulados para medir propriedades específicas e desejadas18,19.
Até agora, a aplicação da citometria de fluxo às células de coral tem sido principalmente para a análise de simbióticos simbiodiníacease e outras populações bacterianas utilizando sua forte autofluorescência natural20,21,,22. O FACS também tem sido usado para estimar o tamanho do genoma do coral usando sinal de marcador de DNA fluorescente comparado com células do organismo modelo de referência23,24. A aplicação eficiente do FACS fornece três ferramentas distintas que são úteis para estudos de biologia celular: 1) descrição morfológica e funcional de células únicas; 2) identificação, separação e isolamento de populações celulares específicas para estudos a jusante; e 3) a análise de ensaios funcionais no nível de célula única.
O desenvolvimento e a aplicação de vários marcadores fluorescentes exógenos para o estudo de células de coral permanece quase inexplorado. Tais marcadores podem incluir proteínas marcadas, substratos marcados para enzimas ou respostas fluorescentes a outros compostos. Esses marcadores podem ser usados para identificar tipos de células que possuem propriedades únicas, como destacar células que produzem quantidades variadas de um compartimento celular específico, como lysososomes. Um exemplo adicional é o uso de contas fluorescentes rotuladas para identificar funcionalmente células competentes para fagocitose, ou o engolfamento de um patógeno direcionado25. Populações de células ativas em respostas de imunidade podem ser facilmente identificadas pelo FACS após o engolfamento dessas contas exógenas aplicadas. Enquanto os métodos histológicos tradicionais requerem tecido preservado e muitas horas para aproximar a porcentagem de células positivas para o engolfamento de contas, um ensaio funcional baseado em FACS para o engolfamento de patógenos pode ser realizado relativamente rapidamente em células vivas isoladas. Além de estudar respostas específicas das células ao estresse, essa tecnologia tem o potencial de esclarecer a expressão específica de genes e iluminar a história evolutiva e de desenvolvimento de tipos celulares inteiramente exclusivos dos cnidários, como calicoblasts e cnidocytes.
Recentemente, realizamos uma triagem intensiva de mais de 30 marcadores celulares que resultou na identificação de 24 capazes de rotular células de coral, das quais 16 são úteis para distinguir populações únicas18,tornando-as clusters de diferenciação (CD). Aqui descrevemos o processo de isolamento das células de coral em Pocillopora damicornis desde a remoção de células do esqueleto de carbonato de cálcio até a identificação e isolamento de populações celulares específicas com FACS (Figura 1).
Access restricted. Please log in or start a trial to view this content.
1. Dissociação de tecidos do esqueleto de coral via escova de ar e compressor
NOTA: Realize passos no gelo e proteja as mãos com luvas.
2. Dissociação de células do tecido coral
NOTA: Realize todas as etapas no gelo e proteja as mãos com luvas.
3. Coloração celular
NOTA: Realize todas as etapas no gelo e proteja as mãos com luvas. As manchas apresentadas neste protocolo são para fins de representação. Manchas alternativas exigirão diferentes concentrações e tempos de incubação.
4. Startup FACS
NOTA: As etapas podem variar de acordo com a marca e o modelo do cítômetro devido a diferenças nos lasers e canais. Para este protocolo, foi utilizado um cicímetro com lasers de comprimento de onda de 405, 488, 535 e 640 nm. Os filtros apresentados neste protocolo são para fins de representação. Manchas de células alternativas podem exigir um conjunto diferente de filtros e lasers.
5. Configuração de gating FACS
NOTA: As etapas podem variar de acordo com a make e o modelo do cítômetro e o programa de aquisição acoplado ao cítmetro.
6. Análise FACS e isolamento celular
NOTA: As etapas podem variar de acordo com a make e o modelo do cítmetro e do programa de aquisição acoplado.
7. Classificação e coleta FACS
NOTA: As etapas podem variar de acordo com a make e o modelo do cítômetro e o programa de aquisição acoplado ao cítmetro.
Access restricted. Please log in or start a trial to view this content.
No geral, esse protocolo é útil porque facilita a identificação e coleta de populações de células de corais vivos que podem ser utilizadas para análises funcionais. O fluxo de trabalho começou com a separação mecânica dos tecidos de coral do esqueleto de carbonato de cálcio subjacente(Figura 1). Este é um dos passos iniciais mais importantes porque a técnica inadequada resulta em alta mortalidade celular e pode criar grandes quantidades de detr...
Access restricted. Please log in or start a trial to view this content.
Este protocolo foi adaptado de Rosental et al.18 e desenvolvido para identificação e isolamento de células P. damicornis. A metodologia se concentra no processo de filtragem de amostras para remover detritos, células não viáveis e células hospedadas por Symbiodiniaceae através do exame de fatores intrínsecos celulares, incluindo tamanho celular relativo, granularidade celular relativa, autofluorescência celular e presença de membranas celulares intactas. Essas técnicas podem s...
Access restricted. Please log in or start a trial to view this content.
Os autores não têm nada a revelar.
A NTK gostaria de reconhecer o Prêmio de Pesquisa da Universidade de Miami em Ciências Naturais e Engenharia por financiar esta pesquisa. A BR agradece a Alex e Ann Lauterbach pelo financiamento do Laboratório de Imunologia Comparativa e Evolutiva. O trabalho da BR contou com o apoio dos números da Fundação Israelia de Ciência (ISF): 1416/19 e 2841/19, e do HFSP Research Grant, RGY0085/2019. Gostaríamos de agradecer a Zhanna Kozhekbaeva e Mike Connelly por assistência técnica. Também gostaríamos de agradecer à Universidade de Miami, Miller School of Medicine's Flow Cytometry Shared Resource no Sylvester Comprehensive Cancer Center pelo acesso ao citômetro FACS e a Shannon Saigh por suporte técnico.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Airbrush Kit & Compressor | TCP Global | ABD KIT-H-SET | Paasche H Series Single-Action Siphon Feed Airbrush Kit with Master TC-20 Compressor & Air Hose |
BD FACSAria II | BD | 644832 | |
Bone Cutters | Bulk Reef Supply | 205357 | Oceans Wonders Coral Stony Bone Cutter |
Cell Strainer | Corning | 352340 | 40 um; BD Falcon; individually wrapped; sterile; nylon |
CellRox Green | Life Technologies | C10444 | 2.5 mM in DMSO; Excitation/Emission: 485/520 nm |
Collection bag | Grainger | 38UV35 | Reloc Zippit 6"L x 4"W Standard Reclosable Poly Bag with Zip Seal Closure, Clear; 2 mil Thickness |
DAPI | Invitrogen | D1306 | 10mg in H2O; Excitation/Emission: 358/461 nm |
Fetal Calf Serum | Sigma-Aldrich | F2442-100ML | Heat-inactivated at 57 °C for 30 minutes |
Hemacytometer | Sigma-Aldrich | Z359629 | Bright-Line Hemacytometer |
HEPES Buffer | Sigma-Aldrich | H0887 | |
LysoTracker Deep Red | Life Technologies | L12492 | 1mM in DMSO; Absorption/Emission: 647/668 nm |
Microcentrifuge tubes | VWR | 87003-294 | 1.7 mL |
Phophate Buffered Saline (PBS) | Gibco | 70011-044 | pH 7.4; 10X |
Round-bottom tubes | VWR | 352063 | 5 mL Polypropylene Round-Bottom Tube |
Syringe | BD | 309628 | 1 mL BD Luer-Lok Syringe sterile, singe use polycarbonate |
Access restricted. Please log in or start a trial to view this content.
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados