Химики обычно используют свойство, известное как энтальпия (H), для описания термодинамики химических и физических процессов. Энтальпия определяется как сумма внутренней энергии системы (E) и математического продукта ее давления (P) и объема (V):
Энтальпия - это функция состояния. Значения энтальпии для конкретных веществ нельзя измерить напрямую; могут быть определены только изменения энтальпии для химических или физических процессов. Для процессов, которые происходят при постоянном давлении (обычное условие для многих химических и физических изменений), изменение энтальпии (& Delta; H ) составляет:
Математическое произведение PΔV представляет работу (w), а именно, работу по расширению или по давлению-объему. По своим определениям, арифметические признаки ΔV и w всегда будут противоположными:
Подстановка этого уравнения и определение внутренней энергии при постоянном давлении (ΔE = qp + w) в уравнение энтальпии-изменения дает:
где qp — тепло реакции в условиях постоянного давления.
Таким образом, если химический или физический процесс выполняется при постоянном давлении с единственной работой, выполняемой вследствие расширения или сжатия (P-V работа), то тепловой поток (qp) и изменение энтальпии (ΔH) для процесса равны.
Тепло, выделяемое при работе горелки Бунзена, равно энтальпирующей смене реакции сгорания метана, которая происходит, так как происходит при существенно постоянном давлении в атмосфере. Химики обычно проводят эксперименты в нормальных атмосферных условиях при постоянном внешнем давлении с qp = ΔH, что делает энтальпию наиболее удобным выбором для определения изменений температуры химических реакций.
Отрицательное значение изменения энтальпии, ΔH < 0, указывает на экзотермическую реакцию (тепло, выделенное окружающей среде); положительное значение, ΔH > 0, указывает на эндотермическую реакцию (тепло, поглощенное окружающей средой). Если направление химического уравнения противоположно, то изменяется арифметический знак его ΔH (процесс, который является эндотермическим в одном направлении, является экзотермическим в противоположном направлении).
Концептуально, ΔE (мера тепла и работы) и ΔH (мера тепла при постоянном давлении) представляют изменения в функции состояния системы. В процессах, где изменение объема, ΔV, невелико (плавление льда), и ΔE и ΔH идентичны. Однако, если изменение объема значительно (испарение воды), то количество энергии, передаваемой в качестве работы, будет значительным; таким образом, ΔE и ΔH имеют значительно разные значения.
Этот текст адаптирован из Openstax, Химия 2е изд., раздел 5.3: Энтальпия.
"Из главы 6:
Now Playing
Термохимия
34.3K Просмотры
Термохимия
36.3K Просмотры
Термохимия
30.4K Просмотры
Термохимия
28.2K Просмотры
Термохимия
52.7K Просмотры
Термохимия
18.7K Просмотры
Термохимия
27.8K Просмотры
Термохимия
83.4K Просмотры
Термохимия
26.6K Просмотры
Термохимия
43.7K Просмотры
Термохимия
40.4K Просмотры
Термохимия
31.2K Просмотры
Авторские права © 2025 MyJoVE Corporation. Все права защищены