Войдите в систему

Consider a region consisting of several individual conductors with a definite charge density in the region between these conductors. The second uniqueness theorem states that if the total charge on each conductor and the charge density in the in-between region are known, then the electric field can be uniquely determined.

In contrast, consider that the electric field is non-unique and apply Gauss's law in divergence form in the region between the conductors and the integral form to the surface enclosing each conductor. When integrated over the outermost boundary, the charge includes the total charge on all the conductors and the charge density in the in-between region.

If a third field is defined as the difference between the two fields, then the divergence of the third field and the integral form of the third field are zero. The product rule is used to obtain the expression for the divergence of the third field and its associated potential. The potential can be written in terms of the field, and applying that the divergence of the third field is zero gives the square of the magnitude of the electric field.

Equation1

Equation2

Equation3

Equation4

This expression is integrated over the region's volume, and the divergence theorem is applied to rewrite the volume integral as a surface integral. Recalling that the surface integral of the third field is zero implies that the magnitude of the third field is zero everywhere. This shows that the first two fields are equal, proving the solution's uniqueness.

Теги
Second Uniqueness TheoremElectric FieldCharge DensityConductorsGauss s LawDivergence FormIntegral FormSurface IntegralDivergence TheoremPotentialUniqueness Proof

Из главы 24:

article

Now Playing

24.15 : Second Uniqueness Theorem

Electric Potential

915 Просмотры

article

24.1 : Электрическая потенциальная энергия

Electric Potential

5.2K Просмотры

article

24.2 : Электрическая потенциальная энергия в однородном электрическом поле

Electric Potential

4.3K Просмотры

article

24.3 : Электрическая потенциальная энергия двухточечных зарядов

Electric Potential

4.2K Просмотры

article

24.4 : Электрический потенциал и разность потенциалов

Electric Potential

4.1K Просмотры

article

24.5 : Определение электрического потенциала по электрическому полю

Electric Potential

3.8K Просмотры

article

24.6 : Расчеты электрического потенциала I

Electric Potential

1.8K Просмотры

article

24.7 : Расчеты электрического потенциала II

Electric Potential

1.5K Просмотры

article

24.8 : Эквипотенциальные поверхности и силовые линии поля

Electric Potential

3.5K Просмотры

article

24.9 : Эквипотенциальные поверхности и проводники

Electric Potential

3.2K Просмотры

article

24.10 : Определение электрического поля по электрическому потенциалу

Electric Potential

4.3K Просмотры

article

24.11 : Уравнение Пуассона и Лапласа

Electric Potential

2.4K Просмотры

article

24.12 : Генератор Ван де Граафа

Electric Potential

1.6K Просмотры

article

24.13 : Энергия, связанная с распределением заряда

Electric Potential

1.4K Просмотры

article

24.14 : Электростатические граничные условия

Electric Potential

355 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены