Accedi

Consider a region consisting of several individual conductors with a definite charge density in the region between these conductors. The second uniqueness theorem states that if the total charge on each conductor and the charge density in the in-between region are known, then the electric field can be uniquely determined.

In contrast, consider that the electric field is non-unique and apply Gauss's law in divergence form in the region between the conductors and the integral form to the surface enclosing each conductor. When integrated over the outermost boundary, the charge includes the total charge on all the conductors and the charge density in the in-between region.

If a third field is defined as the difference between the two fields, then the divergence of the third field and the integral form of the third field are zero. The product rule is used to obtain the expression for the divergence of the third field and its associated potential. The potential can be written in terms of the field, and applying that the divergence of the third field is zero gives the square of the magnitude of the electric field.

Equation1

Equation2

Equation3

Equation4

This expression is integrated over the region's volume, and the divergence theorem is applied to rewrite the volume integral as a surface integral. Recalling that the surface integral of the third field is zero implies that the magnitude of the third field is zero everywhere. This shows that the first two fields are equal, proving the solution's uniqueness.

Tags
Second Uniqueness TheoremElectric FieldCharge DensityConductorsGauss s LawDivergence FormIntegral FormSurface IntegralDivergence TheoremPotentialUniqueness Proof

Dal capitolo 24:

article

Now Playing

24.15 : Second Uniqueness Theorem

Electric Potential

915 Visualizzazioni

article

24.1 : Energia potenziale elettrica

Electric Potential

5.2K Visualizzazioni

article

24.2 : Energia potenziale elettrica in un campo elettrico uniforme

Electric Potential

4.3K Visualizzazioni

article

24.3 : Energia potenziale elettrica delle cariche a due punti

Electric Potential

4.2K Visualizzazioni

article

24.4 : Potenziale elettrico e differenza di potenziale

Electric Potential

4.1K Visualizzazioni

article

24.5 : Trovare il potenziale elettrico dal campo elettrico

Electric Potential

3.8K Visualizzazioni

article

24.6 : Calcoli del potenziale elettrico I

Electric Potential

1.8K Visualizzazioni

article

24.7 : Calcoli del potenziale elettrico II

Electric Potential

1.5K Visualizzazioni

article

24.8 : Superfici equipotenziali e linee di campo

Electric Potential

3.5K Visualizzazioni

article

24.9 : Superfici equipotenziali e conduttori

Electric Potential

3.2K Visualizzazioni

article

24.10 : Determinazione del campo elettrico dal potenziale elettrico

Electric Potential

4.3K Visualizzazioni

article

24.11 : Equazione di Poisson e Laplace

Electric Potential

2.4K Visualizzazioni

article

24.12 : Generatore di Van de Graaff

Electric Potential

1.6K Visualizzazioni

article

24.13 : Energia associata a una distribuzione di carica

Electric Potential

1.4K Visualizzazioni

article

24.14 : Condizioni al contorno elettrostatiche

Electric Potential

355 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati