Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Стромальные клетки костного мозга (MSC) с нейронным потенциалом существуют в костном мозге. Наш протокол обогащает эту популяцию клеток посредством гипоксической предварительной кондиции и после этого направляет их на зрелые клетки Шванна.
В этой рукописи описывается средство обогащения для нейронных предшественников из популяции стромальных клеток костного мозга (MSC), а затем для направления их в зрелую судьбу клеток Шванна. Мы подвергли крысам и человеческим MSCs переходные гипоксические условия (1% кислорода в течение 16 часов), а затем расширение в виде нейросферов на субстрате с низкой степенью присоединения с добавлением фактора роста эпидермального фактора роста (EGF) / основного фибробласта (bFGF). Нейросферы высевали на поликультурный пластик, покрытый поли-D-лизином / ламинином, и культивировали в глиогенном коктейле, содержащем β-Heregulin, bFGF и тромбоцитарный фактор роста (PDGF) для генерации клеточных клеток Schwann (SCLC). SCLC были направлены на участие судьбы через сокультуру в течение 2 недель с очищенными нейронами дорзальных корневых ганглиев (DRG), полученными от E14-15 беременных крыс Sprague Dawley. Зрелые клетки Шванна демонстрируют стойкость в экспрессии S100β / p75 и могут образовывать миелиновые сегменты. Клетки, генерируемые таким образом, имеют потенциалПри трансплантации аутологичных клеток после травмы спинного мозга, а также при моделировании заболеваний.
Трансплантация нейронных предшественников и их производных обещает быть стратегией лечения после травматического повреждения нерва 1 , 2 и нейродегенерацией 3 , 4 . Перед клиническим применением важно обеспечить: i) способ доступа и расширения на аутологичный источник клеток стебля / предшественника и ii) средство для направления их к соответствующим зрелым типам клеток 3 . Наш интерес к клеточной терапии для повреждения спинного мозга привел нас к поиску надежного, аутологичного источника клеток нервных предшественников из тканей взрослых.
Субпопуляция MSC происходит от нервного гребня и легко доступна из полости костного мозга. Эти клетки представляют собой нейронные предшественники, которые могут генерировать нейроны и глии 5 . Модели животных церебральной ишемии демонстрируют, что гипоксия способствует распространению Итерации и мультипотенции нейронных предшественников в мозге 6 . Это было основанием для использования гипоксического предварительного кондиционирования в качестве средства расширения на мозговых нейронных предшественниках.
Трансплантация клеток Шванна в поврежденный спинной мозг способствует регенерации 2 . SCLC могут быть получены из MSC посредством добавления глиогенных факторов ( то есть β-Heregulin, bFGF и PDGF-AA), но демонстрируют фенотипическую нестабильность. После отмены факторов роста они возвращаются к фибробластоподобному фенотипу 7 . Фенотипическая нестабильность нежелательна при трансплантации клеток из-за риска аберрантной дифференциации и канцерогенеза. Поскольку предшественники клеток Шванна связаны с расслоениями аксонов внутри эмбрионального периферического нерва 8 , мы были вовлечены в SCLC с культивированием с очищенными эмбриональными нейронами DRG 7 ,Ass = "xref"> 9. Результирующие зрелые клетки Шванна подвергаются суждению и демонстрируют функцию in vitro 7 , 9 и in vivo 10 .
Наш протокол по обогащению нейронных предшественников из MSC прост и эффективен и приводит к увеличению числа клеток для последующих анализов. Вывод суицидальных клеток Шванна через платформу кокультуры позволяет изучать глиальную дифференциацию и генерировать стабильные и функциональные клетки Шванна для потенциального клинического применения.
Все процедуры, связанные с животными, проводились в строгом соответствии с Руководством NIH по уходу и использованию лабораторных животных и одобрены Комитетом по использованию живых животных для обучения и исследований, Медицинский факультет Ли Ка Шинг, Университет Гонконга. Образцы костного мозга человека были получены из подвздошного гребня здоровых доноров после получения информированного согласия. Протоколы были одобрены Институциональным советом по обзору, Университет Гонконга.
1. Подготовка культур MSC крысы
2. Подготовка человеческих BMSC-культур
3. Гипоксическая предварительная подготовка
4. Культура обогащения нейрогенного прародителя
5. Поколение клеток Шванна, совершенных с помощью судьбы, через кокультуру с помощью нейронов DRG
Обзор основных этапов нашего протокола показан на рисунке 1 . Таким образом, крысиные и человеческие MSC выбираются путем прилипания к пластике тканевой культуры. Расширенные MSC предопределены гипоксией и затем подвержены условиям формирования нейросф...
Крайне важно сохранить «стебельность» MSC до обогащения нейронных предшественников посредством гипоксической предварительной кондиции и культуры нейросферы. По нашему опыту, мультипотентные MSC могут быть надежно идентифицированы по их удлиненной фибробластоподобной морфологии. Нап...
Все авторы этой рукописи не имеют раскрытия, чтобы заявить.
Авторы хотели бы поблагодарить доктора Най-Су Вонга за предоставление аппаратуры для гипоксии и г-жи Алисы Луи за техническую поддержку.
Name | Company | Catalog Number | Comments |
αMEM | Sigmaaldrich | M4526 | |
DMEM/F12 | Thermofisher scientific | 12400-024 | |
Neurobasal medium | Thermofisher scientific | 21103-049 | |
FBS | Biosera | FB-1280/500 | |
B27 | Thermofisher scientific | 17504-001 | |
Epidermal growth factor (EGF) | Thermofisher scientific | PHG0313 | |
Basic fibroblast growth factor (bFGF) | Peprotech | 100-18B/100UG | |
Nerve growth factor (NGF) | Millipore | NC011 | |
Platelet-derived growth factor-AA (PDGF-AA) | Peprotech | 100-13A | |
Heregulin beta-3, EGF domain (β-Her) | Millipore | 01-201 | |
Uridine | Sigmaaldrich | U3003 | |
5-Fluro-2' - deoxyuridine (FDU) | Sigmaaldrich | F0503 | |
Poly-D-lysine (PDL) | Sigmaaldrich | P7886-1G | |
Laminin | Thermofisher scientific | 23017015 | |
GlutaMAX | Thermofisher scientific | 35050061 | |
Penicillin / streptomycin (P/S) | Thermofisher Scientific | 15140-122 | |
TrypLE Express | Thermofisher Scientific | 12604-013 | |
10 cm plate for adherent culture | TPP | 93100 | Used for selection of MSCs by tissue culture adherence |
6-well plate for adherent culture | TPP | 92006 | Used for expansion of MSCs following passaging |
UltraLow 6-well plate for non-adherent culture | Corning | 3471 | Used for neural progenitor enrichment |
anti-human CD90(Thy-1) | BD Biosciences | 555593 | |
anti-human CD73 | BD Biosciences | 550256 | |
anti-human/rat STRO-1 | R&D Systems | MAB1038 | |
anti-human nestin | R&D Systems | MAB1259 | |
anti-human CD45 | BD Biosciences | 555480 | |
anti-rat CD90(Thy-1) | BD Biosciences | 554895 | |
anti-rat CD73 | BD Biosciences | 551123 | |
anti-rat nestin | BD Biosciences | MAB1259 | |
anti-rat CD45 | BD Biosciences | 554875 | |
Anti-S100β | Dako | Z031101 | |
Anti-p75 | Millipore | MAB5386 | |
Anti-GFAP | Sigmaaldrich | G3893 | |
Anti-Class III-beta tubulin (Tuj-1) | Covance | MMS-435P | |
Anti-Human nuclei | Millipore | MAB1281 | |
Hypoxia chamber | Billups-Rothenberg | MIC-101 | |
HEPES buffer | Sigmaaldrich | H4034-100G |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеСмотреть дополнительные статьи
This article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены