JoVE Logo

Войдите в систему

Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

Настоящее исследование описывает простой способ обнаружения эндогенными уровнями Rab10 фосфорилирования лейцин богатые повторить киназа 2.

Аннотация

Мутации в лейцин богатые повторить киназа 2 (LRRK2) было показано, связана с семейной болезни Паркинсона (УЗС). Так как ненормальной активации киназы деятельности LRRK2 был вовлечен в патогенезе PD, важно разработать метод оценки физиологические уровни активности протеинкиназы LRRK2. Недавние исследования показали, что LRRK2 фосфорилирует членов семьи ГТФазы Rab, включая Rab10, в физиологических условиях. Хотя фосфорилирование эндогенного Rab10, LRRK2 культивируемых клеток могут быть обнаружены по масс-спектрометрии, это было трудно его обнаружить, immunoblotting из-за плохой чувствительности имеющихся в настоящее время фосфорилирования специфические антитела для Rab10. Здесь мы опишем простой метод обнаружения эндогенными уровнями Rab10 фосфорилирования, LRRK2 основан на immunoblotting, используя натрия Додециловый электрофорез геля полиакриламида сульфата (SDS-PAGE) в сочетании с фосфат привязки тег (P-), который Это N-(5-(2-aminoethylcarbamoyl)pyridin-2-ylmetyl) -N,N',N'- трис (пиридин-2-yl-метил) - 1,3 - diaminopropan-2-ол. Настоящий Протокол не только представляет собой пример использования тега P методологии, но также позволяет провести оценку как мутации также, как ингибитор лечения/администрация или любые другие факторы изменяют течению сигнализации LRRK2 в клетках и тканях .

Введение

PD-один из наиболее распространенных нейродегенеративных заболеваний, преимущественно затрагивающих дофаминергических нейронов мозга, что приводит к дисфункции Мотор систем в пожилых людей1. В то время как большинство пациентов развивается PD в виде спорадических, есть семьи, наследования заболевания. Увязываться с FPD2были найдены мутации в нескольких генов. Один из причинных генов для FPD является LRRK2, в котором восемь Миссенс-мутации (N1437H, R1441C/G/H/S, Y1699C, G2019S и I2020T) связан с преимущественно унаследованные FPD называется PARK8 пока не сообщил3,4,5. Несколько исследований генома всей ассоциации (GWAS) спорадические PD пациентов выявили также геномной вариации в локусе LRRK2 как фактор риска для PD, предполагая, что ненормальности в функции LRRK2 является распространенной причиной нейродегенеративные в обоих спорадические и PARK8 FPD6,,78.

LRRK2 — это большой белок (2527 аминокислоты) состоящий из лейцин богатые домен, GTP-привязки РАН сложных белков (ROC) домена, C-терминал домена, домен киназы протеина Серин/треонин и WD40 домен9ROC (кор). Восемь мутации FPD найти в этих функциональных областях; N1437H и R1441C/G/H/S в домене ROC, Y1699C в домене COR, G2019S и I2020T в домене киназы. Так как мутация G2019S, который наиболее часто встречается мутации в PD пациентов10,11,12, увеличивает активность протеинкиназы LRRK2 на 2-3 раза в vitro13, можно предположить что аномальное увеличение фосфорилирование LRRK2 substrate(s) является токсичным для нейронов. Однако это было невозможно изучить ли фосфорилирование физиологически соответствующих LRRK2 субстратов изменяется в семейной/спорадические PD пациентов из-за отсутствия методов оценки пациентом производных выборок.

Фосфорилирование белков определяется как правило immunoblotting или энзим соединенный assay иммуносорбента (ELISA) с использованием антител, конкретно признавая фосфорилированных состояние белков или масс-спектрометрических анализа. Однако бывший стратегии иногда нельзя применить из-за трудностей в создании фосфорилирования специфические антитела. Метаболические маркировки клеток с радиоактивными фосфатов является еще одним вариантом для изучения физиологических уровней фосфорилирования, когда фосфорилирования специфические антитела не доступны. Однако он требует большого объема радиоактивных материалов и поэтому включает в себя некоторые специализированное оборудование для радиационной14. Масс-спектрометрических анализ является более чувствительными по сравнению с этим иммунохимические методы и стал популярен в анализе фосфорилирование белков. Однако подготовка образца является длительным, и дорогих инструментов, необходимых для анализа.

Подмножество Rab ГТФазы семьи, включая Rab10 и Rab8 недавно было сообщено как прямым физиологическим субстраты для LRRK2 основанный на результатах анализа крупномасштабных phosphoproteomic15. Затем мы показали, что фосфорилирование Rab10 была увеличена на FPD мутации в мыши эмбриональных фибробластов и легкие knockin мышей16. В настоящем докладе, мы решили использовать электрофорез геля полиакриламида сульфата натрия Додециловый (SDS-PAGE)-на основе метода, в котором молекулы тега P совместно полимеризованной на гелях SDS-PAGE (P-тег SDS-PAGE) для обнаружения эндогенными уровнями фосфорилирование Rab10, потому что высокочувствительный антител специфических для фосфорилированных Rab10 по-прежнему отсутствует. Мы не смогли обнаружить фосфорилирование эндогенного Rab8 за счет бедных избирательности в настоящее время антител для всего Rab8. Поэтому мы решили сосредоточиться на Rab10 фосфорилирования. LRRK2 фосфорилирует Rab10 в Thr73 поиске в середине региона весьма сохраняется «переключатель II». Высокая сохранения фосфорилирование сайтов среди Rab-белков может быть одной из причин, почему phosphospecific антител, признавая различные белки раб трудно сделать.

Фосфорилирование Rab8A, LRRK2 ингибирует связывание Rabin8 фактор обменом нуклеотида гуанина (ГЭФ) который активирует Rab8A путем обмена связанный ВВП с GTP15. Фосфорилирование Rab10 и Rab8A, LRRK2 также ингибирует связывание ВВП диссоциации ингибиторов (GDIs), которые необходимы для активации Rab-белков путем извлечения ВВП прыгните Rab-белков из мембраны15. Коллективно можно предположить, что фосфорилирование белков раб, LRRK2 предотвращает их от активации, хотя точный молекулярный механизм и физиологические последствия фосфорилирование остаются неясными.

P-тег SDS-PAGE была изобретена Киносита et al. в 2006 году: В этом методе, акриламид ковалентно наряду с тега P, молекулы захвата фосфатов с высоким сродством, который Сополимеризованная в SDS-PAGE гели17. Потому, что молекулы P-тега в виде геля SDS-PAGE выборочно ретард электрофоретической подвижности фосфорилированных белков, тег P SDS-PAGE можно отделить фосфорилированных белки от не phosphorylated из них (рис. 1). Если протеин интереса фосфорилированных на нескольких остатков, лестница полос, соответствующий дифференциально фосфорилированных формы будет соблюдаться. В случае Rab10 мы наблюдаем только одна группа смещается, указав, что Rab10 фосфорилированных только на Thr73. Основным преимуществом тега P SDS-PAGE над immunoblotting с фосфорилированием специфические антитела является, что фосфорилированных Rab10 могут быть обнаружены путем immunoblotting с не фосфорилирования специфические антитела (т.е., узнавая всего Rab10) После перевода на мембраны, который как правило более конкретными, чувствительной и доступны из коммерческих/академических источников. Еще одно преимущество использования тега P SDS-PAGE, что можно получить приблизительную оценку стехиометрии фосфорилирование, который невозможно путем immunoblotting с фосфорилированием специфические антитела или маркировки метаболизм клеток с радиоактивными фосфаты.

Помимо использования недорогой тега P акриламида и некоторые незначительные изменения, связанные с ним нынешний метод для обнаружения Rab10 фосфорилирования, LRRK2 следует общий протокол immunoblotting.Таким образом его следует просто и легко исполняемый в любой лаборатории, где immunoblotting является обычной практикой, с любыми типами образцов, включая очищенные белки, lysates клетки и ткани гомогенатах.

Access restricted. Please log in or start a trial to view this content.

протокол

1. Пробоподготовка для тега P SDS-страницы

  1. Удалить и сбросить СМИ от 10 см блюда, в которых клетки выращивают с помощью всасывающего и вымыть клетки с 5 мл Дульбекко фосфат амортизированное saline (DPBS), Первый Добавление DPBS в сторону блюд, чтобы не мешать слоя клеток и вручную рок блюда обратно и обратно несколько раз.
  2. Удаление и отказаться от DPBS, с помощью всасывающего и добавить 2 мл 0,25% (w/v) трипсина, разбавленных в DPBS и осторожно покачайте блюда для покрытия слоя клеток. Положите блюда в CO2 инкубатора (37 ° C, увлажненный воздух, 5% CO2) 5 мин.
  3. После закупорить вверх и вниз с помощью одноразовой пипетки с распадаются на отдельные клетки, собирать суспензию клеток в 15 мл трубку и измерить плотность клеток с помощью hematocytometer под микроскопом18.
  4. Разбавьте клетки 2,5 × 105 клеток/мл с Дульбекко изменение Eagle среднего (DMEM) с 10% (v/v) плода бычьим сывороточным (ФБС), 100 ед/мл пенициллина и стрептомицина 100 мкг/мл. Добавьте 2 мл (5 × 105 клеток) суспензии разреженных клеток в каждой скважины 6-ну плит.
  5. Рост клеток на ночь в инкубатор CO2 (37 ° C, увлажненный воздух, 5% CO2).
  6. Трансфекция в HEK293 клетки
    Примечание: Если фосфорилирование эндогенного Rab10 быть расмотренным, переходите к шагу 1.7. От авторов по запросу можно получить плазмиды, используемые в настоящем Протоколе. Смотрите Таблицу материалов для краткую информацию и S1 рисунок для их ДНК последовательностей.
    1. Аликвота 200 мкл DMEM в 1,5 мл пробирок.
    2. В каждую пробирку добавьте оба 0,266 мкг (конечная концентрация 1.33 мкг/мл) плазмида кодирования ха-Rab10 и 1.066 мкг (конечная концентрация 5,33 мкг/мл) плазмида кодирования 3 × флаг-LRRK2 от 500 мкг/мл плазмида запасов. Затем добавить 4 мкл раствора 1 мг/мл полиэтиленимина (растворяют в 20 мм HEPES-NaOH, рН 7,0) и сразу же mix решение vortexing для 5 s.
    3. Пусть трубы постоять 10 мин при комнатной температуре и добавить содержимое одной трубки каплям один хорошо с помощью микропипеткой. Нежно и вручную рок культуры пластин и обратно несколько раз пусть смесь трансфекции диффузный равномерно на протяжении колодца.
  7. Пусть растут еще 24-36 ч в инкубатор CO2 (37 ° C, увлажненный воздух, 5% CO2) клетки.
  8. Если необходимо изучить фосфорилирование эндогенного Rab10, лечить клетки с и без LRRK2 ингибиторы за 1 ч до лизировать клетки.
    1. Подготовка запасов решения LRRK2 ингибиторов, растворяя ингибиторов в диметилсульфоксида (ДМСО) на 10 мм. Мы рекомендуем использовать MLi-2 и GSK2578215A, которые являются весьма конкретными и мощным LRRK2 ингибиторов. Хранение запасов решения-80 ° c.
    2. Подготовить рабочие запасы ингибиторов путем разбавления акций решения с ДМСО: MLi-2, подготовить 30 мкм и 10 мкм для эндогенного и Гиперэкспрессия LRRK2, соответственно. Для GSK2578215A Подготовьте 1 мм и 3 мм для эндогенного и Гиперэкспрессия LRRK2, соответственно.
    3. 2 мкл рабочие запасы MLi-2 или GSK2578215A в середине одной хорошо с помощью микропипеткой и осторожно покачайте пластины вручную и обратно несколько раз позволить ингибиторы диффузный равномерно на протяжении колодца.
    4. Мкл 2 ДМСО в различных колодец как отрицательный контроль в аналогии с ингибитором в шаге 1.8.3.
    5. Поместите пластины обратно в инкубаторе и культура клетки за 1 ч.
  9. Лизируйте клетки.
    1. Положите культуры пластин на льду. Снимите и выбросьте средств массовой информации. Вымойте клетки первого добавления 2 мл DPBS в сторону блюд, чтобы не мешать клетки слоя и вручную рок блюда и обратно несколько раз.
    2. Удалить и сбросить DPBS и добавить в ячейки 100 мкл буфера lysis (50 мм трис-HCl pH 7.5, 1% (v/v) polyoxyethylene(10) octylphenyl эфира, 1 мм EGTA (этиленгликоль bis(2-aminoethylether)-N, N, N', N'-tetraacetic кислота), Ортованадат натрия 1 мм, 50 мм Фторид натрия, 10 мм β-метронидазол, Пирофосфат натрия 5 мм, 0,1 мкг/мл микроцистина LR, 270 мм сахарозы, ингибитор протеазы коктейль).
    3. Наклона пластины на льду и циклюют клетки, клетки скребком собрать столько клеток lysate максимально. Соберите лизатов, используя микропипеткой в 1,5 мл пробирок (предварительно охлажденным на льду).
      Предупреждение: Микроцистина-LR может быть смертельным, если проглотил или при контакте с кожей.
  10. Пусть стоять на льду за 10 мин для полный лизис трубы. Уточнить lysates клетки центрифугированием (20 000 × g, 10 мин при температуре 4 ° C) и передачи supernatants новый 1,5 мл пробирок, предварительно охлажденные на льду.
  11. Измерить концентрацию белка (мкг/мкл) очищается лизатов assay Брадфорд.
    1. Подготовить бычьим сывороточным альбумином (БСА) стандартов (0,2, 0,4, 0.6, 0.8 и 1 мг/мл) путем разбавления Стоковый раствор с дистиллированной водой. Разбавить очищается lysates клетки в 20 раз с дистиллированной водой.
    2. Поставьте 5 мкл/хорошо BSA стандартов, бланк (дистиллированная вода) и каждый разбавленный клеток lysate в 96-луночных плиту в трех экземплярах.
    3. Добавить 150 мкл/хорошо реагента assay Брэдфорд, с помощью 12-канальный микропипеткой и пусть пластину постоять 5 мин при комнатной температуре.
    4. Измерение оптической плотности в 595 Нм на тарелку читателя и сравнить с BSA стандартов.
  12. Подготовка 100 мкл образцов для SDS-PAGE. Концентрация белка образцов составляет 1 мкг/мкл для гиперэкспрессия ха-Rab10 и 2 мкг/мкл для эндогенного Rab10.
    1. Использование количественных концентрации от шага 1.11.4, рассчитайте объем (мкл) lysates клетки эквивалентна 100 мкг (гиперэкспрессия ха-Rab10) или 200 мкг (эндогенные Rab10) путем деления суммы белка (100 мкг или 200 мкг), концентрация белка лизатов (мкг g/мкл).
    2. Добавьте 25 мкл буфера выборки SDS-PAGE 4 × Лэмли (62,5 мм трис-HCl, pH 6.8, 8% (w/v) SDS, 40% (v/v) глицерина, 0,02% (w/v) бромфеноловый синий, 4% (v/v) β-меркаптоэтанол) новый 1,5 мл пробирок, хранится при комнатной температуре.
    3. Добавить вычисляемый объем ячейки лизатов каждой трубки и смешать с vortexing для 5 s при комнатной температуре.
    4. Довести общий объем до 100 мкл буфера lysis и микс на vortexing для 5 s при комнатной температуре.
  13. Дополнение с 10 мм2 НКД утолить комплексон. 1 мкл НКД 500 мм2. Микс на vortexing для 5 s при комнатной температуре.
    Примечание: Образцы, содержащие НКД2 не может быть подходящим для нормальной SDS-PAGE.
Этот шаг необходим из-за присутствия комплексон (например Этилендиаминтетрауксусная кислота (ЭДТА), EGTA, и т.д.) в буфере lysis. В противном случае Mn2 + ионов в сочетании с тега P акриламида будет отделить хелатирующий агентами, и тег P SDS-PAGE не будет работать должным образом.
  • Вскипятить все образцы при 100 ° C за 5 мин и хранить образцы ниже-20 ° C до использования. Вареные образцы могут быть сохранены до по крайней мере 6 месяцев.
  • 2. кастинг гели для тега P SDS-страницы

    Примечание: Гели следует в тот же день, как работает гели. Гели могут быть сделаны при условиях окружающего освещения.

    1. Подготовить раствор акриламида 5 мм тега P, первый растворяя 10 мг порошка/твердых тега P акриламида полностью с 100 мкл метанола и затем довести до 3,3 мл, добавив двойной дистиллированной воды.
      Примечание: Тег P акриламида является светочувствительный. Приготовленный раствор должен храниться в темноте при температуре 4 ° C до использования.
    2. Чистой простой и зубчатый пластины распыления 70% этанола и протереть бумажным полотенцем. Соберите гель пластины. Размеры плит гель, используемые в этот конкретный протокол, 80 или 100 мм длиной 100 мм в ширину. Чистого кремния прокладки ставятся между равнины и зубчатый пластины и сборных плит зажимается с зажимы.
      Примечание: Может использоваться любой тип гель пластин, которые работают для обычных SDS-PAGE.
    3. Положить гребень быть использованы (17-ну Пластиковая расческа) в собранном гель пластины и Марк на пластину гель положение в нижней части скважины с постоянным маркером.
    4. Подготовка 10 мл смеси гель акриламида 10% (10% (w/v) акриламида (acrylamide:bis-акриламид = 29: 1), 375 мм трис-HCl (рН 8,8), 0,1% (w/v) SDS) в 15 мл.
      Примечание: Оптимальной концентрации акриламида может отличаться в зависимости от используемых реагентов. Tetramethylethylenediamine (TEMED) и Аммония пероксодисульфат (APS) не должны быть добавлены на данный момент.
    5. Добавьте 100 мкл акриламида тега P 5 мм и 10 мкл 1 М НКД2 решения на заключительном концентрации 50 мкм и 100 мкм, соответственно.
      Примечание: Оптимальные концентрации акриламида тега P и НКД2 также могут варьироваться в зависимости от реагентов, используемых.
    6. Добавьте 15 мкл TEMED смесь гель в конечной концентрации 0,15% (v/v) и затем 50 мкл 10% (w/v) APS в конечной концентрации 0,05% (w/v). Смешайте хорошо аккуратно закрученного трубки для 5 s и вылить в собранном плиты немедленно до высоты это 2 мм ниже позиции, отмеченные на шаге 2.3.
    7. Аккуратно слоя 2-пропанол на решение гель для выравнивания верхней части разделения гели.
    8. Пусть стоять 30 мин при комнатной температуре гели. Это необходимо для защиты Гели от света.
      Примечание: Это может занять больше времени для гелей для установки под холодной комнатной температуре. Дегазация гель смеси перед добавлением APS и TEMED помогает ускорить этот шаг. Для этой цели гель смесь можно приготовить в подключенных к всасывания колбу Эрленмейера 100-200 мл. Дега решение для 10 мин.
    9. Удаление слоистых 2-пропанол, поглощая с бумажным полотенцем.
    10. Вымойте верхнего пространства гели, заполнив пространство с дистиллированной водой из бутылки мытье и слейте воду, поливая покинуть в тазик. Повторите, стирка 3 раза.
    11. Удалите остатки воды, оставаясь в пространстве верхней гели, поглощая с бумажным полотенцем.
    12. Подготовка 3 мл 4% смеси гель акриламида (4% (w/v) акриламида (a: crylamide:bis-акриламид = 29: 1), 125 мм трис-HCl (рН 6,8), 0,1% (w/v) SDS) в 15 мл.
      Примечание: Не добавляйте тег P акриламида или НКД2 решения для укладки смеси гель.
    13. Добавьте 7,5 мкл TEMED и 24 мкл 10% (w/v) APS на окончательный концентрации 0,25% (v/v) и 0,08% (w/v), соответственно. Смешайте хорошо аккуратно закрученного трубки для 5 s и вылить смесь на вершине разделение геля. Сразу же поставьте соответствующие Расчески (17-ну пластиковых гребенок, вместимостью до 25 мкл образцов, например).
    14. Пусть стоять 30 мин при комнатной температуре гели. Это необходимо для защиты Гели от света. После укладки гели, запускаете их без дальнейшего хранения.

    3. SDS-PAGE и Immunoblotting

    1. Удалите гребни из гелей. Затем удалите кремния прокладки и затем клипы из гелей.
    2. Положите литые гели в гель танков и исправить гель в бак, зажима с зажимы.
    3. Залейте идущий буфер (25 мм трис, 192 мм глицин, 0,1% (w/v) SDS) на нижней и верхней части гели. Чистой скважины промывкой идущий буфер, используя 5 мл шприц и игла 21G для удаления геля штук.
    4. Удаления пузырьков воздуха из пространства в нижней гелей, изогнутой иглой, прилагается к шприцу. Чтобы сделать изогнутой иглой, вручную согните иглой 21G в середине иглы так, что угол между кончиком и основание иглы становится 30-45 °.
    5. Спин вниз осадков, вызванных добавлением НКД2 на 20 000 × г за 1 мин при комнатной температуре для получения четких образцов.
    6. Загрузите 10 мкг белка для обнаружения фосфорилирование гиперэкспрессия Rab10 и 30 мкг белков для эндогенного Rab10.
      Примечание: Очень важно для загрузки равный объем выборок на всех скважинах. Пустые полосы должны быть загружены с буфером выборки 1 × Лэмли SDS-PAGE. Если образцы содержат НКД2, добавьте такой же концентрации НКД2 макетные образцы.
    7. Хорошо оборудованные маркер молекулярного веса (МВМ) следует также дополнить буфер образца SDS-PAGE 1 × Лэмли таким образом объем загруженных образцов одинакова во всех скважинах.
      Примечание: Опять же, если образцы содержат НКД2, добавьте такой же концентрации НКД2 MWM. Кроме того ЭДТА свободный MWM может использоваться.
    8. Запустите гели на 50 V для укладки (около 30 мин) до тех пор, пока краска фронт пересекает в разделение геля.
    9. После того, как образцы стека, изменить напряжение 120 V для разделения, до тех пор, пока краска фронта достигает нижней части гели (примерно 50 и 80 мин для 80 и 100 мм длиной гели, соответственно).
      Примечание: Ожидается, что миграция тенденция MWM отличаться от на нормальной гелях SDS-PAGE. Он не должен использоваться для оценки низкомолекулярных белков на гелях SDS-PAGE тега P, но может использоваться для проверки воспроизводимости тега P гели. Обратитесь к дискуссии для деталей.
    10. Вымойте гели для удаления НКД2 из гелей.
      1. Залейте передачи буфера (48 мм трис, 39 мм глицин, 20% (v/v) метанола), содержащий 10 мм ЭДТА и 0,05% (w/v) SDS в контейнер (например, крупные, весом лодки).
    Объем буфера должен быть достаточным для покрытия гель.
  • Снять разделение гели из плит гель и положить один гель в одном контейнере. Выбросите штабелируя гель.
  • Оставьте гели на качалки шейкер (~ 60 об/мин) для 10 мин при комнатной температуре.
  • Повторите шаги мыть в общей сложности 3 раза.
    Примечание: Используйте свежие буфер для каждой стирки.
  • Промойте буфер передачи, содержащий 0,05% (w/v) SDS для удаления ЭДТА гели раз за 10 мин. Объем буфера должен быть достаточным для покрытия гель.
  • Электро передача на нитроцеллюлозную или винилидена мембраны фторид (PVDF), используя влажный танки.
    1. Фильтровальная бумага (10 х 7 см) место на площадку Губка для передачи. Поместите гель на фильтровальной бумаге. Убедитесь, что есть нет пузырьков воздуха между фильтровальная бумага и геля.
    2. Надел гель мембраны (10 x 7 см) и убедитесь, что есть нет пузырьков воздуха между гелем и мембраны.
    3. Положить еще один фильтр бумага (10 х 7 см) на мембраны и, опять же, убедитесь, что есть нет пузырьков воздуха между мембраной и фильтровальную бумагу.
    4. Положите другую площадку Губка на фильтровальной бумаге. Поместите стопку документов мембраны/фильтр в кассету для передачи.
    5. Вставьте кассету передачи танк, убедившись, что мембрана расположен между гелем и положительно заряженный анод.
    6. Подключите бака к источнику питания и поставить бак в стирола пены коробки с ледяной водой. Начало передачи в 100 V 180 мин.
      Примечание: Длительное необходима передача поскольку передача белков от гелях SDS-PAGE тега P не так эффективно, как это от нормальных гелях SDS-PAGE. Эффективное охлаждение важно во избежание плавления гели во время передачи.
  • Проверка передачи
    1. Удаление мембраны из гелей с помощью пинцета и Замочите мембраны в растворе Пуансо (0,1% (w/v) Пуансо, 5% (v/v) уксусная кислота) пятно передаваемых белков на мембраны в пластиковый контейнер. Объем раствора должно быть достаточно для покрытия мембраны.
    2. Инкубируйте мембраны 1 мин при комнатной температуре, тряся вручную.
      Примечание: Лестница полос должны стать видимыми в каждой полосе.
    3. Забрать мембраны из окрашивание раствора с помощью пинцета и посмотреть, если лестница полос имеет единый шаблон и интенсивности в каждом переулке, где были загружены образцы.
    4. После проверки, окрашивание, удалите окрашивание раствора и добавьте TBST буфер (0,1% (v/v) polyoxyethylenesorbitan monolaurate 150 мм NaCl, рН 7,4, 20 мм трис-HCl). Объем буфера должен быть достаточным для покрытия мембраны.
      Примечание: Раствор Пуансо могут быть собраны и повторно использовать несколько раз.
    5. Рок мембраны в TBST на качалки шейкер (~ 60 об/мин) при комнатной температуре до тех пор, пока не видны полосы остаются на мембраны.
    6. Повторите шаг Стиральная с свежими TBST за 5 мин.
  • Снимите и выбросьте TBST. Блокировать, добавив 5% (w/v) обезжиренного молока растворяют в TBST и раскачиваясь на шейкере (~ 60 об/мин) за 1 ч при комнатной температуре. Объем блокирования решения должно быть достаточно для покрытия мембраны.
  • Подготовка основного антитела решения путем разбавления первичного антитела (антитела анти Rab10 для эндогенного Rab10) и антитела анти Ха для гиперэкспрессия ха-Rab10 в 10 мл на мембраны блокирования решения (см. Таблицу материалы для концентрации).
  • Удалите и отказаться от блокирования решения и добавьте основное антитело. Инкубировать мембраны на шейкере качалки (~ 60 об/мин) на ночь при 4 ° C.
  • Удаление основного антитела решения и добавьте TBST мыть мембраны. Объем буфера должен быть достаточным для покрытия мембраны.
  • Инкубируйте мембраны для 5 мин на качалки шейкер (~ 60 об/мин) при комнатной температуре. Повторить 3 раза мыть (шаг 3.16) в общей сложности с использованием свежих TBST каждый раз.
  • Подготовьте вторичное антитело решения путем разбавления вторичное антитело обозначено с пероксидазой хрена (ПХ) в 10 мл на мембраны блокирования решения. Использование анти кролик IgG антитела помечены HRP для мембран, исследовали с антитела анти Rab10 и анти мыши IgG антитела помечены HRP для тех, кто исследован с анти-Ха антитела (см. Таблицу материалы для концентрации).
  • Удаление и отбросить TBST после третьей стирки и добавить раствор вторичных антител. Инкубируйте мембраны на качалки шейкер (~ 60 об/мин) за 1 ч при комнатной температуре.
  • 10 мин повторить мыть шаг в общей сложности 3 раза, подобный шаг 3.17 следует мыть мембраны TBST.
  • Разработка мембраны, используя увеличенная хемолюминесценция (ЭСЛ).
    Примечание: Время экспозиции может варьироваться в зависимости от решения ECL и системы, используемые для обнаружения хемилюминесценции.
    1. Включите формирователь изображений с зарядовой (связью ПЗС) камеру и компьютер, подключенный к томографа. Запустите программное обеспечение управления для томографа. Подождите, пока не достигнута температура камеры на ПЗС-25 ° C.
    2. Положите 1 мл раствора ECL для одной мембраны на полиэтиленовой пленкой распространилась на скамейке.
    3. Надел решения ECL мембрана гель стороной вверх и затем быстро переверните его таким образом, чтобы обе стороны мембраны покрыты с решением.
    4. Забрать мембраны и его слива, позволяя одной стороне мембраны касания бумажным полотенцем для 5 s.
    5. Положите в мембрану между ясно фильмы (например, карманы бумаги).
      Примечание: Полиэтиленовую пленку для упаковки мембраны не рекомендуется. Четкие фильмы, используется для упаковки мембраны должны быть как плоский как можно без видимых морщин, чтобы избежать неравномерного фона.
    6. Место на подносе черный мембраны. Поставьте лоток в томограф и закройте дверцу.
    7. Нажмите кнопку «Сосредоточение внимания» в окне программного обеспечения управления. Убедитесь, что мембрана правильно. Нажмите кнопку «Вернуться».
    8. Выберите «Точность» для «Тип экспозиции». Выберите «Вручную» для «Выдержка» и установите время экспозиции 1 s.
    9. Выберите «Высокий» для «Чувствительность/резолюции». Не устанавливайте флажок «Добавить оцифровки изображения». Нажмите кнопку «Пуск», чтобы принять изображение.
    10. Сохраните изображение, которая появилась на дисплее в компьютере в виде файла TIFF.
    11. Повторите taking изображения с выдержкой от 1, 3, 10, 30, 60, 90, 120, 150 s и до 180 s. При принятии последнего изображения, проверьте «Добавить оцифровки изображения», так что цифровое изображение, не хемилюминесценции, мембраны может приниматься одновременно.
    12. Выберите лучшее изображение с большой динамический диапазон и без каких-либо насыщения пикселей (показано красным цветом) в группах интересов.
      Примечание: Обычных рентгеновских пленок также может использоваться для обнаружения19.
  • Access restricted. Please log in or start a trial to view this content.

    Результаты

    Гиперэкспрессия системы: Фосфорилирование ха Rab10, 3 × флаг LRRK2 в HEK293 клетки:

    HEK293 клетки были transfected с 0,266 мкг одичал тип и 1.066 мкг ха-Rab10 3 × флаг-LRRK2 (одичал типа, киназы неактивные мутант (K1906M), или FPD мутантов). Фосфорилирование Rab10 был рассмотре...

    Access restricted. Please log in or start a trial to view this content.

    Обсуждение

    Здесь мы описываем снисходительный и надежный метод обнаружения Rab10 фосфорилирования, LRRK2 на эндогенных уровнях на основе методологии P-тегов. Потому что в настоящее время антитела против фосфорилированных Rab10 работает только с гиперэкспрессия белка15, нынешнего метода, ис?...

    Access restricted. Please log in or start a trial to view this content.

    Раскрытие информации

    Авторы не имеют ничего сообщать.

    Благодарности

    Мы благодарим д-р Такэси Iwatsubo (Токийский университет, Япония) за любезно предоставление плазмид, кодирование 3xFLAG-LRRK2 WT и мутантов. Мы также благодарим д-р Дарио Алесси (Университет Данди, Великобритания) за любезно MLi-2 и плазмиды, кодирование ха-Rab10. Эта работа была поддержана японского общества для поощрения науки (JSP) KAKENHI Грант номер JP17K08265 (г.и.).

    Access restricted. Please log in or start a trial to view this content.

    Материалы

    NameCompanyCatalog NumberComments
    Reagents
    Dulbecco's phosphate-buffered saline (DPBS)homemade150 mM NaCl, 8 mM Na2HPO4-12H2O, 2.7 mM KCl, 1.5 mM KH2PO4 in MilliQ water and sterilized by autoclaving
    Sodium chlorideNacalai Tesque31320-34
    Sodium Disodium Hydrogenphosphate 12-WaterWako196-02835
    Potassium chlorideWako163-03545
    Potassium Dihydrogen PhosphateWako169-04245
    2.5% Trypsin (10X)Sigma-AldrichT4549Dilute 10-fold with sterile DPBS for preparing working solution
    Dulbecco's modified Eagle medium
    (DMEM)
    Wako044-29765
    Fetal bovine serumBioWestS1560Heat-inactivated at 56 °C for 30 min
    Penicillin-Streptomycin (100X)Wako168-23191
    HEPESWako342-01375
    Sodium hydroxideWako198-13765
    Polyethylenimine HCl MAX, Linear, Mw 40,000 (PEI MAX 40000)PolySciences, Inc.24765-1Stock solution was prepared in 20 mM HEPES-NaOH pH 7.0 at 1 mg/mL and the pH was then adjusted to 7.0 with NaOH
    Dimethyl sulfoxideWako045-28335
    TrisSTARRSP-THA500G
    Hydrochloric acidWako080-01066
    Polyoxyethylene(10) Octylphenyl EtherWako160-24751Equivalent to Triton X-100
    Ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA)Wako346-01312
    Sodium orthovanadate(V)Wako198-09752
    Sodium fluorideKanto Chemical37174-20
    β-Glycerophosphoric Acid Disodium Salt PentahydrateNacalai Tesque17103-82
    Sodium pyrophosphate decahydrateKokusan Chemical2113899
    Microcystin-LRWako136-12241
    SucroseWako196-00015
    Complete EDTA-free protease inhibitor cocktailRoche11873580001Dissolve one tablet in 1 mL water, which can be stored at -20 °C for a month. Use it at 1:50 dilution for cell lysis
    Pierce Coomassie (Bradford) Protein Assay KitThermo Fisher Scientific23200
    Sodium dodecyl sulfateNacalai Tesque31607-65
    GlycerolWako075-00616
    Bromophenol blueWako021-02911
    β-mercaptoethanolKanto Chemical25099-00
    EthanolWako056-06967
    MethanolWako136-01837
    Phosphate-binding tag acrylamideWakoAAL-107P-tag acrylamide
    40% (w/v) acrylamide solutionNacalai Tesque06119-45Acrylamide:Bis = 29:1
    Tetramethylethylenediamine (TEMED)Nacalai Tesque33401-72
    Ammonium persulfate (APS)Wako016-0802110% (w/v) solution was prepared by dissolving the powder of ammonium persulfate in MilliQ water
    2-propanolWako166-04831
    Manganese chloride tetrahydrateSigma-AldrichM3634
    Precision Plus Protein Prestained StandardBio-Rad1610374, 1610373, 1610377Molecular weight marker used in the protocol
    WIDE-VIEW Prestained Protein Size Marker IIIWako230-02461
    GlycineNacalai Tesque17109-64
    Amersham Protran NC 0.45GE Healthcare10600007Nitrocellulose membrane
    Durapore Membrane FilterEMD MilliporeGVHP00010PVDF membrane
    Filter Papers No.1Advantec00013600
    Ponceau SNacalai Tesque28322-72
    Acetic acidWako017-00251
    Tween-20Sigma-AldrichP1379polyoxyethylenesorbitan monolaurate
    Ethylenediaminetetraacetic acid (EDTA)Wako345-01865
    Skim milk powderDifco Laboratories232100
    ImmunostarWako291-55203ECL solution (Normal sensitivity)
    Immunostar LDWako290-69904ECL solution (High sensitivity)
    CBB staining solutionhomemade1 g CBB R-250, 50% (v/v) methanol, 10% (v/v) acetic acid in 1 L of MilliQ water
    CBB R-250Wako031-17922
    CBB destaining solutionhomemade12% (v/v) methanol, 7% (v/v) acetic acid in 1 L MilliQ water
    NameCompanyCatalog NumberComments
    Antibodies
    anti-HA antibodySigma-Aldrich11583816001Used at 0.2 μg/mL for immunoblotting.
    anti-Rab10 antibodyCell Signaling Technology#8127Used at 1:1000 for immunoblotting.
    Specificity was confirmed by CRISPR KO in Ito et al., Biochem J, 2016.
    anti-pSer935 antibodyAbcamab133450Used at 1 μg/mL for immunoblotting.
    anti-LRRK2 antibodyAbcamab133518Used at 1 μg/mL for immunoblotting.
    anti-α-tubulin antibodySigma-AldrichT9026Used at 1 μg/mL for immunoblotting.
    anti-GAPDH antibodySanta-Cruzsc-32233Used at 0.02 μg/mL for immunoblotting.
    Peroxidase AffiniPure Sheep Anti-Mouse IgG (H+L)Jackson ImmunoResearch515-035-003Used at 0.16 μg/mL for immunoblotting.
    Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L)Jackson ImmunoResearch111-035-003Used at 0.16 μg/mL for immunoblotting.
    NameCompanyCatalog NumberComments
    Inhibitors
    GSK2578215AMedChem ExpressHY-13237Stock solution was prepared in DMSO at 10 mM and stored at -80 °C
    MLi-2Provided by Dr Dario Alessi (University of Dundee)Stock solution was prepared in DMSO at 10 mM and stored at -80 °C
    NameCompanyCatalog NumberComments
    Plasmids
    Rab10/pcDNA5 FRT TO HAProvided by Dr Dario Alessi
    (University of Dundee)
    This plasmid expresses amino-terminally HA-tagged human Rab10.
    LRRK2 WT/p3xFLAG-CMV-10Provided by Dr Takeshi Iwatsubo (University of Tokyo)Ito et al., Biochemistry, 46: 1380–1388 (2007). This plasmid expresses amino-terminally 3xFLAG-tagged wild-type human LRRK2.
    LRRK2 K1906M/p3xFLAG-CMV-10Provided by Dr Takeshi Iwatsubo (University of Tokyo)Ito et al., Biochemistry, 46: 1380–1388 (2007). This plasmid expresses amino-terminally 3xFLAG-tagged K1906M kinase-inactive mutant of human LRRK2.
    LRRK2 N1437H/p3xFLAG-CMV-10This paper. This plasmid expresses amino-terminally 3xFLAG-tagged N1437H FPD mutant of human LRRK2.
    LRRK2 R1441C/p3xFLAG-CMV-10Provided by Dr Takeshi Iwatsubo (University of Tokyo)Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged R1441C FPD mutant of human LRRK2.
    LRRK2 R1441G/p3xFLAG-CMV-10Provided by Dr Takeshi Iwatsubo (University of Tokyo)Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged R1441G FPD mutant of human LRRK2.
    LRRK2 R1441H/p3xFLAG-CMV-10Provided by Dr Takeshi Iwatsubo (University of Tokyo)Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged R1441H FPD mutant of human LRRK2.
    LRRK2 R1441S/p3xFLAG-CMV-10This paper. This plasmid expresses amino-terminally 3xFLAG-tagged R1441S FPD mutant of human LRRK2.
    LRRK2 Y1699C/p3xFLAG-CMV-10Provided by Dr Takeshi Iwatsubo (University of Tokyo)Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged Y1699C FPD mutant of human LRRK2.
    LRRK2 G2019S/p3xFLAG-CMV-10Provided by Dr Takeshi Iwatsubo (University of Tokyo)Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged G2019S FPD mutant of human LRRK2.
    LRRK2 I2020T/p3xFLAG-CMV-10Provided by Dr Takeshi Iwatsubo (University of Tokyo)Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged I2020T FPD mutant of human LRRK2.
    NameCompanyCatalog NumberComments
    Equipments
    CO2 incubatorThermo Fisher ScientificForma Series II 3110 Water-Jacketed
    Auto PipetteDrummondPipet-Aid PA-400
    Micropipette P10Nichiryo00-NPX2-100.5–10 μL
    Micropipette P200Nichiryo00-NPX2-20020–200 μL
    Micropipette P1000Nichiryo00-NPX2-1000100–1000 μL
    Tips for micropipette P10STARRST-481LCRSTSterile
    Tips for micropipette P200FUKAEKASEI1201-705YSSterile
    Tips for micropipette P1000STARRST-4810BRSTSterile
    5 mL disporsable pipetteGreiner606180Sterile
    10 mL disporsable pipetteGreiner607180Sterile
    25 mL disporsable pipetteFalcon357535Sterile
    HematocytometerSunlead GlassA126Improved Neubeuer
    MicroscopeOlympusCKX53
    10 cm dishesFalcon353003For tissue culture
    6-well platesAGC Techno Glass3810-006For tissue culture
    Vortex mixerScientific IndustriesVortex-Genie 2
    Cell scrapersSumitomo BakeliteMS-93100
    1.5 mL tubesSTARRSV-MTT1.5
    15 mL tubesAGC Techno Glass2323-015
    50 mL tubesAGC Techno Glass2343-050
    CentrifugesTOMYMX-307
    96-well platesGreiner655061Not for tissue culture
    Plate readerMolecular DevicesSpectraMax M2e
    SDS–PAGE tanksNihon EidoNA-1010
    Transfer tanksNihon EidoNA-1510B
    Gel plates (notched)Nihon EidoNA-1000-1
    Gel plates (plain)Nihon EidoNA-1000-2
    Silicon spacersNihon EidoNA-1000-16
    17-well combsNihon EidoCustom made
    Binder clipsNihon EidoNA-1000-15
    5 mL syringeTerumoSS-05SZ
    21GTerumoNN-2138R
    Power Station 1000 VCATTOAE-8450Power supply for SDS–PAGE and transfer
    Large weighing boatsIna OptikaAS-DL
    Plastic containersAS ONEPS CASE No.410 x 80 x 50 mm
    Rocking shakerTitechNR-10
    Styrene foam boxgenericThe internal dimensions should fit one transfer tank (200 x 250 x 250 mm).
    ImageQuant LAS-4000GE HealthcareAn imager equipped with a cooled CCD camera for detection of ECL

    Ссылки

    1. Sveinbjornsdottir, S. The clinical symptoms of Parkinson's disease. J. Neurochem. 139 (Suppl. 1), 318-324 (2016).
    2. Hernandez, D. G., Reed, X., Singleton, A. B. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J. Neurochem. 139 (Suppl. 1), 59-74 (2016).
    3. Paisán-Ruíz, C., et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron. 44 (4), 595-600 (2004).
    4. Zimprich, A., et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 44 (4), 601-607 (2004).
    5. Gilks, W. P., et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet. 365 (9457), 415-416 (2005).
    6. Satake, W., et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41 (12), 1303-1307 (2009).
    7. Simón-Sánchez, J., et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41 (12), 1308-1312 (2009).
    8. Klein, C., Ziegler, A. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet. 377 (9766), 641-649 (2011).
    9. Cookson, M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat. Rev. Neurosci. 11 (12), 791-797 (2010).
    10. Ozelius, L. J., et al. LRRK2 G2019S as a Cause of Parkinson’s Disease in Ashkenazi Jews. N. Engl. J. Med. 354 (4), 424-425 (2006).
    11. Lesage, S., et al. LRRK2 G2019S as a Cause of Parkinson’s Disease in North African Arabs. N. Engl. J. Med. 354 (4), 422-423 (2006).
    12. Bouhouche, A., et al. LRRK2 G2019S Mutation: Prevalence and Clinical Features in Moroccans with Parkinson's Disease. Parkinsons. Dis. , 1-7 (2017).
    13. West, A. B., et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. U. S. A. 102 (46), 16842-16847 (2005).
    14. Ito, G., et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry. 46 (5), 1380-1388 (2007).
    15. Steger, M., et al. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife. 5, (2016).
    16. Ito, G., et al. Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors. Biochem. J. 473, 2671-2685 (2016).
    17. Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K., Koike, T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics. 5 (4), 749-757 (2006).
    18. Database, J. S. E. Using a Hemacytometer to Count Cells. J. Vis. Exp. , Available from: https://www.jove.com/science-education/5048/using-a-hemacytometer-to-count-cells (2017).
    19. Ni, D., Xu, P., Gallagher, S. Immunoblotting and Immunodetection. Curr. Protoc. Mol. Biol. (114), 10.8.1-10.8.37 (2016).
    20. Reith, A. D., et al. GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg. Med. Chem. Lett. 22 (17), 5625-5629 (2012).
    21. Fell, M. J., et al. MLi-2, a potent, selective and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition. J. Pharmacol. Exp. Ther. 355, 397-409 (2015).
    22. Dzamko, N., et al. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem. J. 430 (3), 405-413 (2010).
    23. Thévenet, J., Pescini Gobert, R., Hooft van Huijsduijnen , R., Wiessner, C., Sagot, Y. J. Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS One. 6 (6), e21519(2011).

    Access restricted. Please log in or start a trial to view this content.

    Перепечатки и разрешения

    Запросить разрешение на использование текста или рисунков этого JoVE статьи

    Запросить разрешение

    Смотреть дополнительные статьи

    1302Rab10SDS PAGEimmunoblotting

    This article has been published

    Video Coming Soon

    JoVE Logo

    Исследования

    Образование

    О JoVE

    Авторские права © 2025 MyJoVE Corporation. Все права защищены