Sign In

Electron Configurations

Electron configurations and orbital diagrams can be determined by applying the Aufbau principle (each added electron occupies the subshell of lowest energy available), Pauli exclusion principle (no two electrons can have the same set of four quantum numbers), and Hund’s rule of maximum multiplicity (whenever possible, electrons retain unpaired spins in degenerate orbitals).

The relative energies of the subshells determine the order in which atomic orbitals are filled (1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, and so on). For various shells and subshells, the trend of penetrating power of an electron can be depicted as follows:

1s > 2s > 2p > 3s > 3p > 4s > 3d > 4p > 5s > 4d > 5p > 6s > 4f....

The effect of shielding and orbital penetration is large, and a 4s electron may have lower energy than a 3d electron.

Electrons in the outermost orbitals, called valence electrons, are responsible for most of the chemical behavior of elements. In the periodic table, elements with analogous valence electron configurations usually occur within the same group.

There are some exceptions to the predicted filling order, particularly when half-filled or completely filled orbitals can be formed. In the case of Cr and Cu, the half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that the electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. However, experimentally, its ground-state electron configuration is actually [Kr]5s14d4. We can rationalize this observation by saying that the electron–electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms

Tags
Electron ConfigurationOrbital DiagramsAufbau PrinciplePauli Exclusion PrincipleHund s Rule Of Maximum MultiplicitySubshellsAtomic OrbitalsPenetrating Power Of An ElectronShieldingOrbital PenetrationValence ElectronsPeriodic TableFilling OrderPreferred Stability

From Chapter undefined:

article

Now Playing

Electron Configurations

Related Videos

12.9K Views

article

What is Organic Chemistry?

Related Videos

50.6K Views

article

Electronic Structure of Atoms

Related Videos

18.1K Views

article

Chemical Bonds

Related Videos

11.9K Views

article

Polar Covalent Bonds

Related Videos

14.0K Views

article

Lewis Structures and Formal Charges

Related Videos

10.4K Views

article

VSEPR Theory

Related Videos

7.2K Views

article

Molecular Geometry and Dipole Moments

Related Videos

10.2K Views

article

Resonance and Hybrid Structures

Related Videos

13.1K Views

article

Valence Bond Theory and Hybridized Orbitals

Related Videos

14.9K Views

article

MO Theory and Covalent Bonding

Related Videos

8.7K Views

article

Intermolecular Forces and Physical Properties

Related Videos

17.9K Views

article

Solubility

Related Videos

13.4K Views

article

Introduction to Functional Groups

Related Videos

21.3K Views

article

Overview of Advanced Functional Groups

Related Videos

19.3K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved