The reaction of hydrogen bromide with alkenes in the presence of hydroperoxides or peroxides proceeds via anti-Markovnikov addition. The radical chain reaction comprisesinitiation, propagation, and termination steps.

The mechanism starts with chain initiation, which involves two steps. In the first chain initiation step, a weak peroxide bond is homolytically cleaved upon mild heating to form two alkoxy radicals. In the second initiation step, a hydrogen atom is abstracted by the alkoxy radical to form a bromine radical. The second part of the reaction is chain propagation. Here, the bromine radical is added to the alkene double bond to give a more stable tertiary alkyl radical. In the second propagation step, a hydrogen atom is abstracted by the alkyl radical to form the final product, followed by the regeneration of a bromine radical. These two propagation steps are repeated, which leads to a chain reaction. A final step is the combination of two bromine radicals to form a stable molecule, which terminates the reaction.

Tags
Radical Anti Markovnikov AdditionHydrogen BromideAlkenesHydroperoxidesPeroxidesRadical Chain ReactionChain InitiationAlkoxy RadicalsBromine RadicalChain PropagationTertiary Alkyl RadicalHydrogen AbstractionTermination Step

From Chapter 20:

article

Now Playing

20.23 : Radical Anti-Markovnikov Addition to Alkenes: Mechanism

Radical Chemistry

3.1K Views

article

20.1 : Radicals: Electronic Structure and Geometry

Radical Chemistry

3.6K Views

article

20.2 : Electron Paramagnetic Resonance (EPR) Spectroscopy: Organic Radicals

Radical Chemistry

2.2K Views

article

20.3 : Radical Formation: Overview

Radical Chemistry

1.9K Views

article

20.4 : Radical Formation: Homolysis

Radical Chemistry

3.1K Views

article

20.5 : Radical Formation: Abstraction

Radical Chemistry

3.2K Views

article

20.6 : Radical Formation: Addition

Radical Chemistry

1.5K Views

article

20.7 : Radical Formation: Elimination

Radical Chemistry

1.6K Views

article

20.8 : Radical Reactivity: Overview

Radical Chemistry

1.7K Views

article

20.9 : Radical Reactivity: Steric Effects

Radical Chemistry

1.8K Views

article

20.10 : Radical Reactivity: Concentration Effects

Radical Chemistry

1.4K Views

article

20.11 : Radical Reactivity: Electrophilic Radicals

Radical Chemistry

1.7K Views

article

20.12 : Radical Reactivity: Nucleophilic Radicals

Radical Chemistry

1.9K Views

article

20.13 : Radical Reactivity: Intramolecular vs Intermolecular

Radical Chemistry

1.7K Views

article

20.14 : Radical Autoxidation

Radical Chemistry

2.0K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved